Metamath Proof Explorer


Theorem infpnlem1

Description: Lemma for infpn . The smallest divisor (greater than 1) M of N ! + 1 is a prime greater than N . (Contributed by NM, 5-May-2005)

Ref Expression
Hypothesis infpnlem.1 K=N!+1
Assertion infpnlem1 NM1<MKMj1<jKjMjN<MjMjj=1j=M

Proof

Step Hyp Ref Expression
1 infpnlem.1 K=N!+1
2 nnre MM
3 nnre NN
4 lenlt MNMN¬N<M
5 2 3 4 syl2anr NMMN¬N<M
6 5 adantr NM1<MMN¬N<M
7 nnnn0 NN0
8 facndiv N0M1<MMN¬N!+1M
9 1 oveq1i KM=N!+1M
10 nnz KMKM
11 9 10 eqeltrrid KMN!+1M
12 8 11 nsyl N0M1<MMN¬KM
13 7 12 sylanl1 NM1<MMN¬KM
14 13 expr NM1<MMN¬KM
15 6 14 sylbird NM1<M¬N<M¬KM
16 15 con4d NM1<MKMN<M
17 16 expimpd NM1<MKMN<M
18 17 adantrd NM1<MKMj1<jKjMjN<M
19 7 faccld NN!
20 19 peano2nnd NN!+1
21 1 20 eqeltrid NK
22 21 nncnd NK
23 nndivtr jMKMjKMKj
24 23 ex jMKMjKMKj
25 24 3com13 KMjMjKMKj
26 25 3expa KMjMjKMKj
27 22 26 sylanl1 NMjMjKMKj
28 27 adantrl NMjMjMjKMKj
29 nnre jj
30 letri3 jMj=MjMMj
31 29 2 30 syl2an jMj=MjMMj
32 31 biimprd jMjMMjj=M
33 32 exp4b jMjMMjj=M
34 33 com3l MjMjMjj=M
35 34 imp32 MjMjMjj=M
36 35 adantll NMjMjMjj=M
37 36 imim2d NMjMj1<jKjMj1<jKjj=M
38 37 com23 NMjMj1<jKj1<jKjMjj=M
39 28 38 sylan2d NMjMj1<jMjKM1<jKjMjj=M
40 39 exp4d NMjMj1<jMjKM1<jKjMjj=M
41 40 com24 NMjMjKMMj1<j1<jKjMjj=M
42 41 exp32 NMjMjKMMj1<j1<jKjMjj=M
43 42 com24 NMKMjjMMj1<j1<jKjMjj=M
44 43 imp31 NMKMjjMMj1<j1<jKjMjj=M
45 44 com14 1<jjMMjNMKMj1<jKjMjj=M
46 45 3imp 1<jjMMjNMKMj1<jKjMjj=M
47 46 com3l NMKMj1<jKjMj1<jjMMjj=M
48 47 ralimdva NMKMj1<jKjMjj1<jjMMjj=M
49 48 ex NMKMj1<jKjMjj1<jjMMjj=M
50 49 adantld NM1<MKMj1<jKjMjj1<jjMMjj=M
51 50 impd NM1<MKMj1<jKjMjj1<jjMMjj=M
52 prime MjMjj=1j=Mj1<jjMMjj=M
53 52 adantl NMjMjj=1j=Mj1<jjMMjj=M
54 51 53 sylibrd NM1<MKMj1<jKjMjjMjj=1j=M
55 18 54 jcad NM1<MKMj1<jKjMjN<MjMjj=1j=M