Description: Lemma for infpn . The smallest divisor (greater than 1) M of N ! + 1 is a prime greater than N . (Contributed by NM, 5-May-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | infpnlem.1 | |
|
Assertion | infpnlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infpnlem.1 | |
|
2 | nnre | |
|
3 | nnre | |
|
4 | lenlt | |
|
5 | 2 3 4 | syl2anr | |
6 | 5 | adantr | |
7 | nnnn0 | |
|
8 | facndiv | |
|
9 | 1 | oveq1i | |
10 | nnz | |
|
11 | 9 10 | eqeltrrid | |
12 | 8 11 | nsyl | |
13 | 7 12 | sylanl1 | |
14 | 13 | expr | |
15 | 6 14 | sylbird | |
16 | 15 | con4d | |
17 | 16 | expimpd | |
18 | 17 | adantrd | |
19 | 7 | faccld | |
20 | 19 | peano2nnd | |
21 | 1 20 | eqeltrid | |
22 | 21 | nncnd | |
23 | nndivtr | |
|
24 | 23 | ex | |
25 | 24 | 3com13 | |
26 | 25 | 3expa | |
27 | 22 26 | sylanl1 | |
28 | 27 | adantrl | |
29 | nnre | |
|
30 | letri3 | |
|
31 | 29 2 30 | syl2an | |
32 | 31 | biimprd | |
33 | 32 | exp4b | |
34 | 33 | com3l | |
35 | 34 | imp32 | |
36 | 35 | adantll | |
37 | 36 | imim2d | |
38 | 37 | com23 | |
39 | 28 38 | sylan2d | |
40 | 39 | exp4d | |
41 | 40 | com24 | |
42 | 41 | exp32 | |
43 | 42 | com24 | |
44 | 43 | imp31 | |
45 | 44 | com14 | |
46 | 45 | 3imp | |
47 | 46 | com3l | |
48 | 47 | ralimdva | |
49 | 48 | ex | |
50 | 49 | adantld | |
51 | 50 | impd | |
52 | prime | |
|
53 | 52 | adantl | |
54 | 51 53 | sylibrd | |
55 | 18 54 | jcad | |