Metamath Proof Explorer


Theorem infxrgelb

Description: The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infxrgelb A*B*BsupA*<xABx

Proof

Step Hyp Ref Expression
1 xrltso <Or*
2 1 a1i A*<Or*
3 xrinfmss A*z*yA¬y<zy*z<yxAx<y
4 id A*A*
5 2 3 4 infglbb A*B*supA*<<BxAx<B
6 5 notbid A*B*¬supA*<<B¬xAx<B
7 ralnex xA¬x<B¬xAx<B
8 6 7 bitr4di A*B*¬supA*<<BxA¬x<B
9 id B*B*
10 infxrcl A*supA*<*
11 xrlenlt B*supA*<*BsupA*<¬supA*<<B
12 9 10 11 syl2anr A*B*BsupA*<¬supA*<<B
13 simplr A*B*xAB*
14 simpl A*B*A*
15 14 sselda A*B*xAx*
16 13 15 xrlenltd A*B*xABx¬x<B
17 16 ralbidva A*B*xABxxA¬x<B
18 8 12 17 3bitr4d A*B*BsupA*<xABx