Metamath Proof Explorer


Theorem invghm

Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses invghm.b B=BaseG
invghm.m I=invgG
Assertion invghm GAbelIGGrpHomG

Proof

Step Hyp Ref Expression
1 invghm.b B=BaseG
2 invghm.m I=invgG
3 eqid +G=+G
4 ablgrp GAbelGGrp
5 1 2 grpinvf GGrpI:BB
6 4 5 syl GAbelI:BB
7 1 3 2 ablinvadd GAbelxByBIx+Gy=Ix+GIy
8 7 3expb GAbelxByBIx+Gy=Ix+GIy
9 1 1 3 3 4 4 6 8 isghmd GAbelIGGrpHomG
10 ghmgrp1 IGGrpHomGGGrp
11 10 adantr IGGrpHomGxByBGGrp
12 simprr IGGrpHomGxByByB
13 simprl IGGrpHomGxByBxB
14 1 3 2 grpinvadd GGrpyBxBIy+Gx=Ix+GIy
15 11 12 13 14 syl3anc IGGrpHomGxByBIy+Gx=Ix+GIy
16 15 fveq2d IGGrpHomGxByBIIy+Gx=IIx+GIy
17 simpl IGGrpHomGxByBIGGrpHomG
18 1 2 grpinvcl GGrpxBIxB
19 11 13 18 syl2anc IGGrpHomGxByBIxB
20 1 2 grpinvcl GGrpyBIyB
21 11 12 20 syl2anc IGGrpHomGxByBIyB
22 1 3 3 ghmlin IGGrpHomGIxBIyBIIx+GIy=IIx+GIIy
23 17 19 21 22 syl3anc IGGrpHomGxByBIIx+GIy=IIx+GIIy
24 1 2 grpinvinv GGrpxBIIx=x
25 11 13 24 syl2anc IGGrpHomGxByBIIx=x
26 1 2 grpinvinv GGrpyBIIy=y
27 11 12 26 syl2anc IGGrpHomGxByBIIy=y
28 25 27 oveq12d IGGrpHomGxByBIIx+GIIy=x+Gy
29 16 23 28 3eqtrd IGGrpHomGxByBIIy+Gx=x+Gy
30 1 3 grpcl GGrpyBxBy+GxB
31 11 12 13 30 syl3anc IGGrpHomGxByBy+GxB
32 1 2 grpinvinv GGrpy+GxBIIy+Gx=y+Gx
33 11 31 32 syl2anc IGGrpHomGxByBIIy+Gx=y+Gx
34 29 33 eqtr3d IGGrpHomGxByBx+Gy=y+Gx
35 34 ralrimivva IGGrpHomGxByBx+Gy=y+Gx
36 1 3 isabl2 GAbelGGrpxByBx+Gy=y+Gx
37 10 35 36 sylanbrc IGGrpHomGGAbel
38 9 37 impbii GAbelIGGrpHomG