Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | invghm.b | |
|
invghm.m | |
||
Assertion | invghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invghm.b | |
|
2 | invghm.m | |
|
3 | eqid | |
|
4 | ablgrp | |
|
5 | 1 2 | grpinvf | |
6 | 4 5 | syl | |
7 | 1 3 2 | ablinvadd | |
8 | 7 | 3expb | |
9 | 1 1 3 3 4 4 6 8 | isghmd | |
10 | ghmgrp1 | |
|
11 | 10 | adantr | |
12 | simprr | |
|
13 | simprl | |
|
14 | 1 3 2 | grpinvadd | |
15 | 11 12 13 14 | syl3anc | |
16 | 15 | fveq2d | |
17 | simpl | |
|
18 | 1 2 | grpinvcl | |
19 | 11 13 18 | syl2anc | |
20 | 1 2 | grpinvcl | |
21 | 11 12 20 | syl2anc | |
22 | 1 3 3 | ghmlin | |
23 | 17 19 21 22 | syl3anc | |
24 | 1 2 | grpinvinv | |
25 | 11 13 24 | syl2anc | |
26 | 1 2 | grpinvinv | |
27 | 11 12 26 | syl2anc | |
28 | 25 27 | oveq12d | |
29 | 16 23 28 | 3eqtrd | |
30 | 1 3 | grpcl | |
31 | 11 12 13 30 | syl3anc | |
32 | 1 2 | grpinvinv | |
33 | 11 31 32 | syl2anc | |
34 | 29 33 | eqtr3d | |
35 | 34 | ralrimivva | |
36 | 1 3 | isabl2 | |
37 | 10 35 36 | sylanbrc | |
38 | 9 37 | impbii | |