Metamath Proof Explorer


Theorem inxpxrn

Description: Two ways to express the intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 10-Apr-2020)

Ref Expression
Assertion inxpxrn RA×BSA×C=RSA×B×C

Proof

Step Hyp Ref Expression
1 xrnrel RelRA×BSA×C
2 relinxp RelRSA×B×C
3 brxrn2 uVuRSxyzx=yzuRyuSz
4 3 elv uRSxyzx=yzuRyuSz
5 4 anbi2i uAuRSxuAyzx=yzuRyuSz
6 5 anbi2i xB×CuAuRSxxB×CuAyzx=yzuRyuSz
7 xrninxp2 RSA×B×C=ux|xB×CuAuRSx
8 7 brabidgaw uRSA×B×CxxB×CuAuRSx
9 brxrn2 uVuRA×BSA×Cxyzx=yzuRA×ByuSA×Cz
10 9 elv uRA×BSA×Cxyzx=yzuRA×ByuSA×Cz
11 3anass x=yzuRA×ByuSA×Czx=yzuRA×ByuSA×Cz
12 11 2exbii yzx=yzuRA×ByuSA×Czyzx=yzuRA×ByuSA×Cz
13 brinxp2 uRA×ByuAyBuRy
14 brinxp2 uSA×CzuAzCuSz
15 13 14 anbi12i uRA×ByuSA×CzuAyBuRyuAzCuSz
16 anan uAyBuRyuAzCuSzyBzCuAuRyuSz
17 15 16 bitri uRA×ByuSA×CzyBzCuAuRyuSz
18 17 anbi2i x=yzuRA×ByuSA×Czx=yzyBzCuAuRyuSz
19 anass x=yzyBzCuAuRyuSzx=yzyBzCuAuRyuSz
20 eqelb x=yzxB×Cx=yzyzB×C
21 opelxp yzB×CyBzC
22 21 anbi2i x=yzyzB×Cx=yzyBzC
23 20 22 bitr2i x=yzyBzCx=yzxB×C
24 23 anbi1i x=yzyBzCuAuRyuSzx=yzxB×CuAuRyuSz
25 18 19 24 3bitr2i x=yzuRA×ByuSA×Czx=yzxB×CuAuRyuSz
26 ancom x=yzxB×CxB×Cx=yz
27 26 anbi1i x=yzxB×CuAuRyuSzxB×Cx=yzuAuRyuSz
28 anass xB×Cx=yzuAuRyuSzxB×Cx=yzuAuRyuSz
29 25 27 28 3bitri x=yzuRA×ByuSA×CzxB×Cx=yzuAuRyuSz
30 an12 x=yzuAuRyuSzuAx=yzuRyuSz
31 3anass x=yzuRyuSzx=yzuRyuSz
32 31 anbi2i uAx=yzuRyuSzuAx=yzuRyuSz
33 30 32 bitr4i x=yzuAuRyuSzuAx=yzuRyuSz
34 33 anbi2i xB×Cx=yzuAuRyuSzxB×CuAx=yzuRyuSz
35 29 34 bitri x=yzuRA×ByuSA×CzxB×CuAx=yzuRyuSz
36 35 2exbii yzx=yzuRA×ByuSA×CzyzxB×CuAx=yzuRyuSz
37 19.42vv yzxB×CuAx=yzuRyuSzxB×CyzuAx=yzuRyuSz
38 19.42vv yzuAx=yzuRyuSzuAyzx=yzuRyuSz
39 38 anbi2i xB×CyzuAx=yzuRyuSzxB×CuAyzx=yzuRyuSz
40 36 37 39 3bitri yzx=yzuRA×ByuSA×CzxB×CuAyzx=yzuRyuSz
41 10 12 40 3bitri uRA×BSA×CxxB×CuAyzx=yzuRyuSz
42 6 8 41 3bitr4ri uRA×BSA×CxuRSA×B×Cx
43 1 2 42 eqbrriv RA×BSA×C=RSA×B×C