Description: Two ways to express the intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 10-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | inxpxrn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnrel | |
|
2 | relinxp | |
|
3 | brxrn2 | |
|
4 | 3 | elv | |
5 | 4 | anbi2i | |
6 | 5 | anbi2i | |
7 | xrninxp2 | |
|
8 | 7 | brabidgaw | |
9 | brxrn2 | |
|
10 | 9 | elv | |
11 | 3anass | |
|
12 | 11 | 2exbii | |
13 | brinxp2 | |
|
14 | brinxp2 | |
|
15 | 13 14 | anbi12i | |
16 | anan | |
|
17 | 15 16 | bitri | |
18 | 17 | anbi2i | |
19 | anass | |
|
20 | eqelb | |
|
21 | opelxp | |
|
22 | 21 | anbi2i | |
23 | 20 22 | bitr2i | |
24 | 23 | anbi1i | |
25 | 18 19 24 | 3bitr2i | |
26 | ancom | |
|
27 | 26 | anbi1i | |
28 | anass | |
|
29 | 25 27 28 | 3bitri | |
30 | an12 | |
|
31 | 3anass | |
|
32 | 31 | anbi2i | |
33 | 30 32 | bitr4i | |
34 | 33 | anbi2i | |
35 | 29 34 | bitri | |
36 | 35 | 2exbii | |
37 | 19.42vv | |
|
38 | 19.42vv | |
|
39 | 38 | anbi2i | |
40 | 36 37 39 | 3bitri | |
41 | 10 12 40 | 3bitri | |
42 | 6 8 41 | 3bitr4ri | |
43 | 1 2 42 | eqbrriv | |