Metamath Proof Explorer


Theorem isassa

Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by SN, 2-Mar-2025)

Ref Expression
Hypotheses isassa.v V=BaseW
isassa.f F=ScalarW
isassa.b B=BaseF
isassa.s ·˙=W
isassa.t ×˙=W
Assertion isassa WAssAlgWLModWRingrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y

Proof

Step Hyp Ref Expression
1 isassa.v V=BaseW
2 isassa.f F=ScalarW
3 isassa.b B=BaseF
4 isassa.s ·˙=W
5 isassa.t ×˙=W
6 fvexd w=WScalarwV
7 fveq2 w=WScalarw=ScalarW
8 7 2 eqtr4di w=WScalarw=F
9 fveq2 f=FBasef=BaseF
10 9 3 eqtr4di f=FBasef=B
11 10 adantl w=Wf=FBasef=B
12 fveq2 w=WBasew=BaseW
13 12 1 eqtr4di w=WBasew=V
14 simpr s=·˙t=×˙t=×˙
15 simpl s=·˙t=×˙s=·˙
16 15 oveqd s=·˙t=×˙rsx=r·˙x
17 eqidd s=·˙t=×˙y=y
18 14 16 17 oveq123d s=·˙t=×˙rsxty=r·˙x×˙y
19 eqidd s=·˙t=×˙r=r
20 14 oveqd s=·˙t=×˙xty=x×˙y
21 15 19 20 oveq123d s=·˙t=×˙rsxty=r·˙x×˙y
22 18 21 eqeq12d s=·˙t=×˙rsxty=rsxtyr·˙x×˙y=r·˙x×˙y
23 eqidd s=·˙t=×˙x=x
24 15 oveqd s=·˙t=×˙rsy=r·˙y
25 14 23 24 oveq123d s=·˙t=×˙xtrsy=x×˙r·˙y
26 25 21 eqeq12d s=·˙t=×˙xtrsy=rsxtyx×˙r·˙y=r·˙x×˙y
27 22 26 anbi12d s=·˙t=×˙rsxty=rsxtyxtrsy=rsxtyr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
28 4 5 27 sbcie2s w=W[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxtyr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
29 13 28 raleqbidv w=WyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxtyyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
30 13 29 raleqbidv w=WxBasewyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxtyxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
31 30 adantr w=Wf=FxBasewyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxtyxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
32 11 31 raleqbidv w=Wf=FrBasefxBasewyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxtyrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
33 6 8 32 sbcied2 w=W[˙Scalarw/f]˙rBasefxBasewyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxtyrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
34 df-assa AssAlg=wLModRing|[˙Scalarw/f]˙rBasefxBasewyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxty
35 33 34 elrab2 WAssAlgWLModRingrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
36 elin WLModRingWLModWRing
37 36 anbi1i WLModRingrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙yWLModWRingrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
38 35 37 bitri WAssAlgWLModWRingrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y