Metamath Proof Explorer


Theorem iscmet

Description: The property " D is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014) (Revised by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypothesis iscmet.1 J=MetOpenD
Assertion iscmet DCMetXDMetXfCauFilDJfLimf

Proof

Step Hyp Ref Expression
1 iscmet.1 J=MetOpenD
2 elfvex DCMetXXV
3 elfvex DMetXXV
4 3 adantr DMetXfCauFilDJfLimfXV
5 fveq2 x=XMetx=MetX
6 5 rabeqdv x=XdMetx|fCauFildMetOpendfLimf=dMetX|fCauFildMetOpendfLimf
7 df-cmet CMet=xVdMetx|fCauFildMetOpendfLimf
8 fvex MetXV
9 8 rabex dMetX|fCauFildMetOpendfLimfV
10 6 7 9 fvmpt XVCMetX=dMetX|fCauFildMetOpendfLimf
11 10 eleq2d XVDCMetXDdMetX|fCauFildMetOpendfLimf
12 fveq2 d=DCauFild=CauFilD
13 fveq2 d=DMetOpend=MetOpenD
14 13 1 eqtr4di d=DMetOpend=J
15 14 oveq1d d=DMetOpendfLimf=JfLimf
16 15 neeq1d d=DMetOpendfLimfJfLimf
17 12 16 raleqbidv d=DfCauFildMetOpendfLimffCauFilDJfLimf
18 17 elrab DdMetX|fCauFildMetOpendfLimfDMetXfCauFilDJfLimf
19 11 18 bitrdi XVDCMetXDMetXfCauFilDJfLimf
20 2 4 19 pm5.21nii DCMetXDMetXfCauFilDJfLimf