Description: Lemma for iscnrm3 . Given a topology J , if two separated sets can be separated by open neighborhoods, then all subspaces of the topology J are normal, i.e., two disjoint closed sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | iscnrm3l | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | simpr | |
|
3 | 2 | fveq2d | |
4 | 1 3 | ineq12d | |
5 | 4 | eqeq1d | |
6 | 1 | fveq2d | |
7 | 6 2 | ineq12d | |
8 | 7 | eqeq1d | |
9 | 5 8 | anbi12d | |
10 | 1 | sseq1d | |
11 | 2 | sseq1d | |
12 | 10 11 | 3anbi12d | |
13 | 12 | 2rexbidv | |
14 | iscnrm3llem1 | |
|
15 | simp1 | |
|
16 | eqidd | |
|
17 | simp21 | |
|
18 | 17 | elpwid | |
19 | eqidd | |
|
20 | simp22 | |
|
21 | simp3 | |
|
22 | simp23 | |
|
23 | 15 16 18 19 20 21 22 | restclssep | |
24 | iscnrm3llem2 | |
|
25 | 23 24 | embantd | |
26 | 9 13 14 25 | iscnrm3lem5 | |