Metamath Proof Explorer


Theorem iscnrm3l

Description: Lemma for iscnrm3 . Given a topology J , if two separated sets can be separated by open neighborhoods, then all subspaces of the topology J are normal, i.e., two disjoint closed sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Assertion iscnrm3l JTops𝒫Jt𝒫JsclsJt=clsJst=nJmJsntmnm=Z𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=lJ𝑡ZkJ𝑡ZClDklk=

Proof

Step Hyp Ref Expression
1 simpl s=Ct=Ds=C
2 simpr s=Ct=Dt=D
3 2 fveq2d s=Ct=DclsJt=clsJD
4 1 3 ineq12d s=Ct=DsclsJt=CclsJD
5 4 eqeq1d s=Ct=DsclsJt=CclsJD=
6 1 fveq2d s=Ct=DclsJs=clsJC
7 6 2 ineq12d s=Ct=DclsJst=clsJCD
8 7 eqeq1d s=Ct=DclsJst=clsJCD=
9 5 8 anbi12d s=Ct=DsclsJt=clsJst=CclsJD=clsJCD=
10 1 sseq1d s=Ct=DsnCn
11 2 sseq1d s=Ct=DtmDm
12 10 11 3anbi12d s=Ct=Dsntmnm=CnDmnm=
13 12 2rexbidv s=Ct=DnJmJsntmnm=nJmJCnDmnm=
14 iscnrm3llem1 JTopZ𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=C𝒫JD𝒫J
15 simp1 JTopZ𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=JTop
16 eqidd JTopZ𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=J=J
17 simp21 JTopZ𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=Z𝒫J
18 17 elpwid JTopZ𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=ZJ
19 eqidd JTopZ𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=J𝑡Z=J𝑡Z
20 simp22 JTopZ𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=CClsdJ𝑡Z
21 simp3 JTopZ𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=CD=
22 simp23 JTopZ𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=DClsdJ𝑡Z
23 15 16 18 19 20 21 22 restclssep JTopZ𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=CclsJD=clsJCD=
24 iscnrm3llem2 JTopZ𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=nJmJCnDmnm=lJ𝑡ZkJ𝑡ZClDklk=
25 23 24 embantd JTopZ𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=CclsJD=clsJCD=nJmJCnDmnm=lJ𝑡ZkJ𝑡ZClDklk=
26 9 13 14 25 iscnrm3lem5 JTops𝒫Jt𝒫JsclsJt=clsJst=nJmJsntmnm=Z𝒫JCClsdJ𝑡ZDClsdJ𝑡ZCD=lJ𝑡ZkJ𝑡ZClDklk=