Metamath Proof Explorer


Theorem iscph

Description: A subcomplex pre-Hilbert space is exactly a pre-Hilbert space over a subfield of the field of complex numbers closed under square roots of nonnegative reals equipped with a norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses iscph.v V=BaseW
iscph.h ,˙=𝑖W
iscph.n N=normW
iscph.f F=ScalarW
iscph.k K=BaseF
Assertion iscph WCPreHilWPreHilWNrmModF=fld𝑠KK0+∞KN=xVx,˙x

Proof

Step Hyp Ref Expression
1 iscph.v V=BaseW
2 iscph.h ,˙=𝑖W
3 iscph.n N=normW
4 iscph.f F=ScalarW
5 iscph.k K=BaseF
6 elin WPreHilNrmModWPreHilWNrmMod
7 6 anbi1i WPreHilNrmModF=fld𝑠KWPreHilWNrmModF=fld𝑠K
8 df-3an WPreHilWNrmModF=fld𝑠KWPreHilWNrmModF=fld𝑠K
9 7 8 bitr4i WPreHilNrmModF=fld𝑠KWPreHilWNrmModF=fld𝑠K
10 9 anbi1i WPreHilNrmModF=fld𝑠KK0+∞KN=xVx,˙xWPreHilWNrmModF=fld𝑠KK0+∞KN=xVx,˙x
11 fvexd w=WScalarwV
12 fvexd w=Wf=ScalarwBasefV
13 simplr w=Wf=Scalarwk=Baseff=Scalarw
14 simpll w=Wf=Scalarwk=Basefw=W
15 14 fveq2d w=Wf=Scalarwk=BasefScalarw=ScalarW
16 15 4 eqtr4di w=Wf=Scalarwk=BasefScalarw=F
17 13 16 eqtrd w=Wf=Scalarwk=Baseff=F
18 simpr w=Wf=Scalarwk=Basefk=Basef
19 17 fveq2d w=Wf=Scalarwk=BasefBasef=BaseF
20 19 5 eqtr4di w=Wf=Scalarwk=BasefBasef=K
21 18 20 eqtrd w=Wf=Scalarwk=Basefk=K
22 21 oveq2d w=Wf=Scalarwk=Baseffld𝑠k=fld𝑠K
23 17 22 eqeq12d w=Wf=Scalarwk=Baseff=fld𝑠kF=fld𝑠K
24 21 ineq1d w=Wf=Scalarwk=Basefk0+∞=K0+∞
25 24 imaeq2d w=Wf=Scalarwk=Basefk0+∞=K0+∞
26 25 21 sseq12d w=Wf=Scalarwk=Basefk0+∞kK0+∞K
27 14 fveq2d w=Wf=Scalarwk=Basefnormw=normW
28 27 3 eqtr4di w=Wf=Scalarwk=Basefnormw=N
29 14 fveq2d w=Wf=Scalarwk=BasefBasew=BaseW
30 29 1 eqtr4di w=Wf=Scalarwk=BasefBasew=V
31 14 fveq2d w=Wf=Scalarwk=Basef𝑖w=𝑖W
32 31 2 eqtr4di w=Wf=Scalarwk=Basef𝑖w=,˙
33 32 oveqd w=Wf=Scalarwk=Basefx𝑖wx=x,˙x
34 33 fveq2d w=Wf=Scalarwk=Basefx𝑖wx=x,˙x
35 30 34 mpteq12dv w=Wf=Scalarwk=BasefxBasewx𝑖wx=xVx,˙x
36 28 35 eqeq12d w=Wf=Scalarwk=Basefnormw=xBasewx𝑖wxN=xVx,˙x
37 23 26 36 3anbi123d w=Wf=Scalarwk=Baseff=fld𝑠kk0+∞knormw=xBasewx𝑖wxF=fld𝑠KK0+∞KN=xVx,˙x
38 3anass F=fld𝑠KK0+∞KN=xVx,˙xF=fld𝑠KK0+∞KN=xVx,˙x
39 37 38 bitrdi w=Wf=Scalarwk=Baseff=fld𝑠kk0+∞knormw=xBasewx𝑖wxF=fld𝑠KK0+∞KN=xVx,˙x
40 12 39 sbcied w=Wf=Scalarw[˙Basef/k]˙f=fld𝑠kk0+∞knormw=xBasewx𝑖wxF=fld𝑠KK0+∞KN=xVx,˙x
41 11 40 sbcied w=W[˙Scalarw/f]˙[˙Basef/k]˙f=fld𝑠kk0+∞knormw=xBasewx𝑖wxF=fld𝑠KK0+∞KN=xVx,˙x
42 df-cph CPreHil=wPreHilNrmMod|[˙Scalarw/f]˙[˙Basef/k]˙f=fld𝑠kk0+∞knormw=xBasewx𝑖wx
43 41 42 elrab2 WCPreHilWPreHilNrmModF=fld𝑠KK0+∞KN=xVx,˙x
44 anass WPreHilNrmModF=fld𝑠KK0+∞KN=xVx,˙xWPreHilNrmModF=fld𝑠KK0+∞KN=xVx,˙x
45 43 44 bitr4i WCPreHilWPreHilNrmModF=fld𝑠KK0+∞KN=xVx,˙x
46 3anass WPreHilWNrmModF=fld𝑠KK0+∞KN=xVx,˙xWPreHilWNrmModF=fld𝑠KK0+∞KN=xVx,˙x
47 10 45 46 3bitr4i WCPreHilWPreHilWNrmModF=fld𝑠KK0+∞KN=xVx,˙x