Description: A subcomplex pre-Hilbert space is exactly a pre-Hilbert space over a subfield of the field of complex numbers closed under square roots of nonnegative reals equipped with a norm. (Contributed by Mario Carneiro, 8-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iscph.v | |
|
iscph.h | |
||
iscph.n | |
||
iscph.f | |
||
iscph.k | |
||
Assertion | iscph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscph.v | |
|
2 | iscph.h | |
|
3 | iscph.n | |
|
4 | iscph.f | |
|
5 | iscph.k | |
|
6 | elin | |
|
7 | 6 | anbi1i | |
8 | df-3an | |
|
9 | 7 8 | bitr4i | |
10 | 9 | anbi1i | |
11 | fvexd | |
|
12 | fvexd | |
|
13 | simplr | |
|
14 | simpll | |
|
15 | 14 | fveq2d | |
16 | 15 4 | eqtr4di | |
17 | 13 16 | eqtrd | |
18 | simpr | |
|
19 | 17 | fveq2d | |
20 | 19 5 | eqtr4di | |
21 | 18 20 | eqtrd | |
22 | 21 | oveq2d | |
23 | 17 22 | eqeq12d | |
24 | 21 | ineq1d | |
25 | 24 | imaeq2d | |
26 | 25 21 | sseq12d | |
27 | 14 | fveq2d | |
28 | 27 3 | eqtr4di | |
29 | 14 | fveq2d | |
30 | 29 1 | eqtr4di | |
31 | 14 | fveq2d | |
32 | 31 2 | eqtr4di | |
33 | 32 | oveqd | |
34 | 33 | fveq2d | |
35 | 30 34 | mpteq12dv | |
36 | 28 35 | eqeq12d | |
37 | 23 26 36 | 3anbi123d | |
38 | 3anass | |
|
39 | 37 38 | bitrdi | |
40 | 12 39 | sbcied | |
41 | 11 40 | sbcied | |
42 | df-cph | |
|
43 | 41 42 | elrab2 | |
44 | anass | |
|
45 | 43 44 | bitr4i | |
46 | 3anass | |
|
47 | 10 45 46 | 3bitr4i | |