Metamath Proof Explorer


Theorem isfth

Description: Value of the set of faithful functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypothesis isfth.b B=BaseC
Assertion isfth FCFaithDGFCFuncDGxByBFunxGy-1

Proof

Step Hyp Ref Expression
1 isfth.b B=BaseC
2 fthfunc CFaithDCFuncD
3 2 ssbri FCFaithDGFCFuncDG
4 df-br FCFuncDGFGCFuncD
5 funcrcl FGCFuncDCCatDCat
6 4 5 sylbi FCFuncDGCCatDCat
7 oveq12 c=Cd=DcFuncd=CFuncD
8 7 breqd c=Cd=DfcFuncdgfCFuncDg
9 simpl c=Cd=Dc=C
10 9 fveq2d c=Cd=DBasec=BaseC
11 10 1 eqtr4di c=Cd=DBasec=B
12 11 raleqdv c=Cd=DyBasecFunxgy-1yBFunxgy-1
13 11 12 raleqbidv c=Cd=DxBasecyBasecFunxgy-1xByBFunxgy-1
14 8 13 anbi12d c=Cd=DfcFuncdgxBasecyBasecFunxgy-1fCFuncDgxByBFunxgy-1
15 14 opabbidv c=Cd=Dfg|fcFuncdgxBasecyBasecFunxgy-1=fg|fCFuncDgxByBFunxgy-1
16 df-fth Faith=cCat,dCatfg|fcFuncdgxBasecyBasecFunxgy-1
17 ovex CFuncDV
18 simpl fCFuncDgxByBFunxgy-1fCFuncDg
19 18 ssopab2i fg|fCFuncDgxByBFunxgy-1fg|fCFuncDg
20 opabss fg|fCFuncDgCFuncD
21 19 20 sstri fg|fCFuncDgxByBFunxgy-1CFuncD
22 17 21 ssexi fg|fCFuncDgxByBFunxgy-1V
23 15 16 22 ovmpoa CCatDCatCFaithD=fg|fCFuncDgxByBFunxgy-1
24 6 23 syl FCFuncDGCFaithD=fg|fCFuncDgxByBFunxgy-1
25 24 breqd FCFuncDGFCFaithDGFfg|fCFuncDgxByBFunxgy-1G
26 relfunc RelCFuncD
27 26 brrelex12i FCFuncDGFVGV
28 breq12 f=Fg=GfCFuncDgFCFuncDG
29 simpr f=Fg=Gg=G
30 29 oveqd f=Fg=Gxgy=xGy
31 30 cnveqd f=Fg=Gxgy-1=xGy-1
32 31 funeqd f=Fg=GFunxgy-1FunxGy-1
33 32 2ralbidv f=Fg=GxByBFunxgy-1xByBFunxGy-1
34 28 33 anbi12d f=Fg=GfCFuncDgxByBFunxgy-1FCFuncDGxByBFunxGy-1
35 eqid fg|fCFuncDgxByBFunxgy-1=fg|fCFuncDgxByBFunxgy-1
36 34 35 brabga FVGVFfg|fCFuncDgxByBFunxgy-1GFCFuncDGxByBFunxGy-1
37 27 36 syl FCFuncDGFfg|fCFuncDgxByBFunxgy-1GFCFuncDGxByBFunxGy-1
38 25 37 bitrd FCFuncDGFCFaithDGFCFuncDGxByBFunxGy-1
39 38 bianabs FCFuncDGFCFaithDGxByBFunxGy-1
40 3 39 biadanii FCFaithDGFCFuncDGxByBFunxGy-1