Metamath Proof Explorer


Theorem isi1f

Description: The predicate " F is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom F e. dom S.1 to represent this concept because S.1 is the first preparation function for our final definition S. (see df-itg ); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion isi1f Fdom1FMblFnF:ranFFinvolF-10

Proof

Step Hyp Ref Expression
1 feq1 g=Fg:F:
2 rneq g=Frang=ranF
3 2 eleq1d g=FrangFinranFFin
4 cnveq g=Fg-1=F-1
5 4 imaeq1d g=Fg-10=F-10
6 5 fveq2d g=Fvolg-10=volF-10
7 6 eleq1d g=Fvolg-10volF-10
8 1 3 7 3anbi123d g=Fg:rangFinvolg-10F:ranFFinvolF-10
9 sumex xranf0xvolf-1xV
10 df-itg1 1=fgMblFn|g:rangFinvolg-10xranf0xvolf-1x
11 9 10 dmmpti dom1=gMblFn|g:rangFinvolg-10
12 8 11 elrab2 Fdom1FMblFnF:ranFFinvolF-10