Description: Condition for a family of sets to be directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isipodrs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | drsbn0 | |
3 | 2 | neneqd | |
4 | fvprc | |
|
5 | 4 | fveq2d | |
6 | base0 | |
|
7 | 5 6 | eqtr4di | |
8 | 3 7 | nsyl2 | |
9 | simp1 | |
|
10 | eqid | |
|
11 | 1 10 | isdrs | |
12 | eqid | |
|
13 | 12 | ipopos | |
14 | posprs | |
|
15 | 13 14 | mp1i | |
16 | id | |
|
17 | 15 16 | 2thd | |
18 | 12 | ipobas | |
19 | neeq1 | |
|
20 | rexeq | |
|
21 | 20 | raleqbi1dv | |
22 | 21 | raleqbi1dv | |
23 | 19 22 | anbi12d | |
24 | 18 23 | syl | |
25 | simpll | |
|
26 | simplrl | |
|
27 | simpr | |
|
28 | 12 10 | ipole | |
29 | 25 26 27 28 | syl3anc | |
30 | simplrr | |
|
31 | 12 10 | ipole | |
32 | 25 30 27 31 | syl3anc | |
33 | 29 32 | anbi12d | |
34 | unss | |
|
35 | 33 34 | bitrdi | |
36 | 35 | rexbidva | |
37 | 36 | 2ralbidva | |
38 | 37 | anbi2d | |
39 | 24 38 | bitr3d | |
40 | 17 39 | anbi12d | |
41 | 3anass | |
|
42 | 3anass | |
|
43 | 40 41 42 | 3bitr4g | |
44 | 11 43 | bitrid | |
45 | 8 9 44 | pm5.21nii | |