Metamath Proof Explorer


Theorem islininds

Description: The property of being a linearly independent subset. (Contributed by AV, 13-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses islininds.b B=BaseM
islininds.z Z=0M
islininds.r R=ScalarM
islininds.e E=BaseR
islininds.0 0˙=0R
Assertion islininds SVMWSlinIndSMS𝒫BfESfinSupp0˙fflinCMS=ZxSfx=0˙

Proof

Step Hyp Ref Expression
1 islininds.b B=BaseM
2 islininds.z Z=0M
3 islininds.r R=ScalarM
4 islininds.e E=BaseR
5 islininds.0 0˙=0R
6 simpl s=Sm=Ms=S
7 fveq2 m=MBasem=BaseM
8 7 1 eqtr4di m=MBasem=B
9 8 adantl s=Sm=MBasem=B
10 9 pweqd s=Sm=M𝒫Basem=𝒫B
11 6 10 eleq12d s=Sm=Ms𝒫BasemS𝒫B
12 fveq2 m=MScalarm=ScalarM
13 12 3 eqtr4di m=MScalarm=R
14 13 fveq2d m=MBaseScalarm=BaseR
15 14 4 eqtr4di m=MBaseScalarm=E
16 15 adantl s=Sm=MBaseScalarm=E
17 16 6 oveq12d s=Sm=MBaseScalarms=ES
18 12 adantl s=Sm=MScalarm=ScalarM
19 18 3 eqtr4di s=Sm=MScalarm=R
20 19 fveq2d s=Sm=M0Scalarm=0R
21 20 5 eqtr4di s=Sm=M0Scalarm=0˙
22 21 breq2d s=Sm=MfinSupp0ScalarmffinSupp0˙f
23 fveq2 m=MlinCm=linCM
24 23 adantl s=Sm=MlinCm=linCM
25 eqidd s=Sm=Mf=f
26 24 25 6 oveq123d s=Sm=MflinCms=flinCMS
27 fveq2 m=M0m=0M
28 27 adantl s=Sm=M0m=0M
29 28 2 eqtr4di s=Sm=M0m=Z
30 26 29 eqeq12d s=Sm=MflinCms=0mflinCMS=Z
31 22 30 anbi12d s=Sm=MfinSupp0ScalarmfflinCms=0mfinSupp0˙fflinCMS=Z
32 13 fveq2d m=M0Scalarm=0R
33 32 5 eqtr4di m=M0Scalarm=0˙
34 33 adantl s=Sm=M0Scalarm=0˙
35 34 eqeq2d s=Sm=Mfx=0Scalarmfx=0˙
36 6 35 raleqbidv s=Sm=Mxsfx=0ScalarmxSfx=0˙
37 31 36 imbi12d s=Sm=MfinSupp0ScalarmfflinCms=0mxsfx=0ScalarmfinSupp0˙fflinCMS=ZxSfx=0˙
38 17 37 raleqbidv s=Sm=MfBaseScalarmsfinSupp0ScalarmfflinCms=0mxsfx=0ScalarmfESfinSupp0˙fflinCMS=ZxSfx=0˙
39 11 38 anbi12d s=Sm=Ms𝒫BasemfBaseScalarmsfinSupp0ScalarmfflinCms=0mxsfx=0ScalarmS𝒫BfESfinSupp0˙fflinCMS=ZxSfx=0˙
40 df-lininds linIndS=sm|s𝒫BasemfBaseScalarmsfinSupp0ScalarmfflinCms=0mxsfx=0Scalarm
41 39 40 brabga SVMWSlinIndSMS𝒫BfESfinSupp0˙fflinCMS=ZxSfx=0˙