Metamath Proof Explorer


Theorem islininds

Description: The property of being a linearly independent subset. (Contributed by AV, 13-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses islininds.b B = Base M
islininds.z Z = 0 M
islininds.r R = Scalar M
islininds.e E = Base R
islininds.0 0 ˙ = 0 R
Assertion islininds S V M W S linIndS M S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙

Proof

Step Hyp Ref Expression
1 islininds.b B = Base M
2 islininds.z Z = 0 M
3 islininds.r R = Scalar M
4 islininds.e E = Base R
5 islininds.0 0 ˙ = 0 R
6 simpl s = S m = M s = S
7 fveq2 m = M Base m = Base M
8 7 1 eqtr4di m = M Base m = B
9 8 adantl s = S m = M Base m = B
10 9 pweqd s = S m = M 𝒫 Base m = 𝒫 B
11 6 10 eleq12d s = S m = M s 𝒫 Base m S 𝒫 B
12 fveq2 m = M Scalar m = Scalar M
13 12 3 eqtr4di m = M Scalar m = R
14 13 fveq2d m = M Base Scalar m = Base R
15 14 4 eqtr4di m = M Base Scalar m = E
16 15 adantl s = S m = M Base Scalar m = E
17 16 6 oveq12d s = S m = M Base Scalar m s = E S
18 12 adantl s = S m = M Scalar m = Scalar M
19 18 3 eqtr4di s = S m = M Scalar m = R
20 19 fveq2d s = S m = M 0 Scalar m = 0 R
21 20 5 eqtr4di s = S m = M 0 Scalar m = 0 ˙
22 21 breq2d s = S m = M finSupp 0 Scalar m f finSupp 0 ˙ f
23 fveq2 m = M linC m = linC M
24 23 adantl s = S m = M linC m = linC M
25 eqidd s = S m = M f = f
26 24 25 6 oveq123d s = S m = M f linC m s = f linC M S
27 fveq2 m = M 0 m = 0 M
28 27 adantl s = S m = M 0 m = 0 M
29 28 2 eqtr4di s = S m = M 0 m = Z
30 26 29 eqeq12d s = S m = M f linC m s = 0 m f linC M S = Z
31 22 30 anbi12d s = S m = M finSupp 0 Scalar m f f linC m s = 0 m finSupp 0 ˙ f f linC M S = Z
32 13 fveq2d m = M 0 Scalar m = 0 R
33 32 5 eqtr4di m = M 0 Scalar m = 0 ˙
34 33 adantl s = S m = M 0 Scalar m = 0 ˙
35 34 eqeq2d s = S m = M f x = 0 Scalar m f x = 0 ˙
36 6 35 raleqbidv s = S m = M x s f x = 0 Scalar m x S f x = 0 ˙
37 31 36 imbi12d s = S m = M finSupp 0 Scalar m f f linC m s = 0 m x s f x = 0 Scalar m finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
38 17 37 raleqbidv s = S m = M f Base Scalar m s finSupp 0 Scalar m f f linC m s = 0 m x s f x = 0 Scalar m f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
39 11 38 anbi12d s = S m = M s 𝒫 Base m f Base Scalar m s finSupp 0 Scalar m f f linC m s = 0 m x s f x = 0 Scalar m S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
40 df-lininds linIndS = s m | s 𝒫 Base m f Base Scalar m s finSupp 0 Scalar m f f linC m s = 0 m x s f x = 0 Scalar m
41 39 40 brabga S V M W S linIndS M S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙