Metamath Proof Explorer


Theorem islmim

Description: An isomorphism of left modules is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Hypotheses islmim.b B=BaseR
islmim.c C=BaseS
Assertion islmim FRLMIsoSFRLMHomSF:B1-1 ontoC

Proof

Step Hyp Ref Expression
1 islmim.b B=BaseR
2 islmim.c C=BaseS
3 df-lmim LMIso=aLMod,bLModcaLMHomb|c:Basea1-1 ontoBaseb
4 ovex aLMHombV
5 4 rabex caLMHomb|c:Basea1-1 ontoBasebV
6 oveq12 a=Rb=SaLMHomb=RLMHomS
7 fveq2 a=RBasea=BaseR
8 7 1 eqtr4di a=RBasea=B
9 fveq2 b=SBaseb=BaseS
10 9 2 eqtr4di b=SBaseb=C
11 f1oeq23 Basea=BBaseb=Cc:Basea1-1 ontoBasebc:B1-1 ontoC
12 8 10 11 syl2an a=Rb=Sc:Basea1-1 ontoBasebc:B1-1 ontoC
13 6 12 rabeqbidv a=Rb=ScaLMHomb|c:Basea1-1 ontoBaseb=cRLMHomS|c:B1-1 ontoC
14 3 5 13 elovmpo FRLMIsoSRLModSLModFcRLMHomS|c:B1-1 ontoC
15 df-3an RLModSLModFcRLMHomS|c:B1-1 ontoCRLModSLModFcRLMHomS|c:B1-1 ontoC
16 f1oeq1 c=Fc:B1-1 ontoCF:B1-1 ontoC
17 16 elrab FcRLMHomS|c:B1-1 ontoCFRLMHomSF:B1-1 ontoC
18 17 anbi2i RLModSLModFcRLMHomS|c:B1-1 ontoCRLModSLModFRLMHomSF:B1-1 ontoC
19 lmhmlmod1 FRLMHomSRLMod
20 lmhmlmod2 FRLMHomSSLMod
21 19 20 jca FRLMHomSRLModSLMod
22 21 adantr FRLMHomSF:B1-1 ontoCRLModSLMod
23 22 pm4.71ri FRLMHomSF:B1-1 ontoCRLModSLModFRLMHomSF:B1-1 ontoC
24 18 23 bitr4i RLModSLModFcRLMHomS|c:B1-1 ontoCFRLMHomSF:B1-1 ontoC
25 14 15 24 3bitri FRLMIsoSFRLMHomSF:B1-1 ontoC