Description: An isomorphism of left modules is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islmim.b | |
|
islmim.c | |
||
Assertion | islmim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islmim.b | |
|
2 | islmim.c | |
|
3 | df-lmim | |
|
4 | ovex | |
|
5 | 4 | rabex | |
6 | oveq12 | |
|
7 | fveq2 | |
|
8 | 7 1 | eqtr4di | |
9 | fveq2 | |
|
10 | 9 2 | eqtr4di | |
11 | f1oeq23 | |
|
12 | 8 10 11 | syl2an | |
13 | 6 12 | rabeqbidv | |
14 | 3 5 13 | elovmpo | |
15 | df-3an | |
|
16 | f1oeq1 | |
|
17 | 16 | elrab | |
18 | 17 | anbi2i | |
19 | lmhmlmod1 | |
|
20 | lmhmlmod2 | |
|
21 | 19 20 | jca | |
22 | 21 | adantr | |
23 | 22 | pm4.71ri | |
24 | 18 23 | bitr4i | |
25 | 14 15 24 | 3bitri | |