Metamath Proof Explorer


Theorem islpln2a

Description: The predicate "is a lattice plane" for join of atoms. (Contributed by NM, 16-Jul-2012)

Ref Expression
Hypotheses islpln2a.l ˙=K
islpln2a.j ˙=joinK
islpln2a.a A=AtomsK
islpln2a.p P=LPlanesK
Assertion islpln2a KHLQARASAQ˙R˙SPQR¬S˙Q˙R

Proof

Step Hyp Ref Expression
1 islpln2a.l ˙=K
2 islpln2a.j ˙=joinK
3 islpln2a.a A=AtomsK
4 islpln2a.p P=LPlanesK
5 oveq1 Q=RQ˙R=R˙R
6 2 3 hlatjidm KHLRAR˙R=R
7 6 3ad2antr2 KHLQARASAR˙R=R
8 5 7 sylan9eqr KHLQARASAQ=RQ˙R=R
9 8 oveq1d KHLQARASAQ=RQ˙R˙S=R˙S
10 simpll KHLQARASAQ=RKHL
11 simplr2 KHLQARASAQ=RRA
12 simplr3 KHLQARASAQ=RSA
13 2 3 4 2atnelpln KHLRASA¬R˙SP
14 10 11 12 13 syl3anc KHLQARASAQ=R¬R˙SP
15 9 14 eqneltrd KHLQARASAQ=R¬Q˙R˙SP
16 15 ex KHLQARASAQ=R¬Q˙R˙SP
17 16 necon2ad KHLQARASAQ˙R˙SPQR
18 hllat KHLKLat
19 18 adantr KHLQARASAKLat
20 simpr3 KHLQARASASA
21 eqid BaseK=BaseK
22 21 3 atbase SASBaseK
23 20 22 syl KHLQARASASBaseK
24 21 2 3 hlatjcl KHLQARAQ˙RBaseK
25 24 3adant3r3 KHLQARASAQ˙RBaseK
26 21 1 2 latleeqj2 KLatSBaseKQ˙RBaseKS˙Q˙RQ˙R˙S=Q˙R
27 19 23 25 26 syl3anc KHLQARASAS˙Q˙RQ˙R˙S=Q˙R
28 2 3 4 2atnelpln KHLQARA¬Q˙RP
29 28 3adant3r3 KHLQARASA¬Q˙RP
30 eleq1 Q˙R˙S=Q˙RQ˙R˙SPQ˙RP
31 30 notbid Q˙R˙S=Q˙R¬Q˙R˙SP¬Q˙RP
32 29 31 syl5ibrcom KHLQARASAQ˙R˙S=Q˙R¬Q˙R˙SP
33 27 32 sylbid KHLQARASAS˙Q˙R¬Q˙R˙SP
34 33 con2d KHLQARASAQ˙R˙SP¬S˙Q˙R
35 17 34 jcad KHLQARASAQ˙R˙SPQR¬S˙Q˙R
36 1 2 3 4 lplni2 KHLQARASAQR¬S˙Q˙RQ˙R˙SP
37 36 3expia KHLQARASAQR¬S˙Q˙RQ˙R˙SP
38 35 37 impbid KHLQARASAQ˙R˙SPQR¬S˙Q˙R