| Step | Hyp | Ref | Expression | 
						
							| 1 |  | islpln2a.l |  | 
						
							| 2 |  | islpln2a.j |  | 
						
							| 3 |  | islpln2a.a |  | 
						
							| 4 |  | islpln2a.p |  | 
						
							| 5 |  | oveq1 |  | 
						
							| 6 | 2 3 | hlatjidm |  | 
						
							| 7 | 6 | 3ad2antr2 |  | 
						
							| 8 | 5 7 | sylan9eqr |  | 
						
							| 9 | 8 | oveq1d |  | 
						
							| 10 |  | simpll |  | 
						
							| 11 |  | simplr2 |  | 
						
							| 12 |  | simplr3 |  | 
						
							| 13 | 2 3 4 | 2atnelpln |  | 
						
							| 14 | 10 11 12 13 | syl3anc |  | 
						
							| 15 | 9 14 | eqneltrd |  | 
						
							| 16 | 15 | ex |  | 
						
							| 17 | 16 | necon2ad |  | 
						
							| 18 |  | hllat |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 |  | simpr3 |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 21 3 | atbase |  | 
						
							| 23 | 20 22 | syl |  | 
						
							| 24 | 21 2 3 | hlatjcl |  | 
						
							| 25 | 24 | 3adant3r3 |  | 
						
							| 26 | 21 1 2 | latleeqj2 |  | 
						
							| 27 | 19 23 25 26 | syl3anc |  | 
						
							| 28 | 2 3 4 | 2atnelpln |  | 
						
							| 29 | 28 | 3adant3r3 |  | 
						
							| 30 |  | eleq1 |  | 
						
							| 31 | 30 | notbid |  | 
						
							| 32 | 29 31 | syl5ibrcom |  | 
						
							| 33 | 27 32 | sylbid |  | 
						
							| 34 | 33 | con2d |  | 
						
							| 35 | 17 34 | jcad |  | 
						
							| 36 | 1 2 3 4 | lplni2 |  | 
						
							| 37 | 36 | 3expia |  | 
						
							| 38 | 35 37 | impbid |  |