Metamath Proof Explorer


Theorem ismred2

Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Hypotheses ismred2.ss φC𝒫X
ismred2.in φsCXsC
Assertion ismred2 φCMooreX

Proof

Step Hyp Ref Expression
1 ismred2.ss φC𝒫X
2 ismred2.in φsCXsC
3 eqid =
4 rint0 =X=X
5 3 4 ax-mp X=X
6 0ss C
7 0ex V
8 sseq1 s=sCC
9 8 anbi2d s=φsCφC
10 inteq s=s=
11 10 ineq2d s=Xs=X
12 11 eleq1d s=XsCXC
13 9 12 imbi12d s=φsCXsCφCXC
14 7 13 2 vtocl φCXC
15 6 14 mpan2 φXC
16 5 15 eqeltrrid φXC
17 simp2 φsCssC
18 1 3ad2ant1 φsCsC𝒫X
19 17 18 sstrd φsCss𝒫X
20 simp3 φsCss
21 rintn0 s𝒫XsXs=s
22 19 20 21 syl2anc φsCsXs=s
23 2 3adant3 φsCsXsC
24 22 23 eqeltrrd φsCssC
25 1 16 24 ismred φCMooreX