Metamath Proof Explorer


Theorem isnsg

Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses isnsg.1 X=BaseG
isnsg.2 +˙=+G
Assertion isnsg SNrmSGrpGSSubGrpGxXyXx+˙ySy+˙xS

Proof

Step Hyp Ref Expression
1 isnsg.1 X=BaseG
2 isnsg.2 +˙=+G
3 df-nsg NrmSGrp=gGrpsSubGrpg|[˙Baseg/b]˙[˙+g/p]˙xbybxpysypxs
4 3 mptrcl SNrmSGrpGGGrp
5 subgrcl SSubGrpGGGrp
6 5 adantr SSubGrpGxXyXx+˙ySy+˙xSGGrp
7 fveq2 g=GSubGrpg=SubGrpG
8 fvexd g=GBasegV
9 fveq2 g=GBaseg=BaseG
10 9 1 eqtr4di g=GBaseg=X
11 fvexd g=Gb=X+gV
12 simpl g=Gb=Xg=G
13 12 fveq2d g=Gb=X+g=+G
14 13 2 eqtr4di g=Gb=X+g=+˙
15 simplr g=Gb=Xp=+˙b=X
16 simpr g=Gb=Xp=+˙p=+˙
17 16 oveqd g=Gb=Xp=+˙xpy=x+˙y
18 17 eleq1d g=Gb=Xp=+˙xpysx+˙ys
19 16 oveqd g=Gb=Xp=+˙ypx=y+˙x
20 19 eleq1d g=Gb=Xp=+˙ypxsy+˙xs
21 18 20 bibi12d g=Gb=Xp=+˙xpysypxsx+˙ysy+˙xs
22 15 21 raleqbidv g=Gb=Xp=+˙ybxpysypxsyXx+˙ysy+˙xs
23 15 22 raleqbidv g=Gb=Xp=+˙xbybxpysypxsxXyXx+˙ysy+˙xs
24 11 14 23 sbcied2 g=Gb=X[˙+g/p]˙xbybxpysypxsxXyXx+˙ysy+˙xs
25 8 10 24 sbcied2 g=G[˙Baseg/b]˙[˙+g/p]˙xbybxpysypxsxXyXx+˙ysy+˙xs
26 7 25 rabeqbidv g=GsSubGrpg|[˙Baseg/b]˙[˙+g/p]˙xbybxpysypxs=sSubGrpG|xXyXx+˙ysy+˙xs
27 fvex SubGrpGV
28 27 rabex sSubGrpG|xXyXx+˙ysy+˙xsV
29 26 3 28 fvmpt GGrpNrmSGrpG=sSubGrpG|xXyXx+˙ysy+˙xs
30 29 eleq2d GGrpSNrmSGrpGSsSubGrpG|xXyXx+˙ysy+˙xs
31 eleq2 s=Sx+˙ysx+˙yS
32 eleq2 s=Sy+˙xsy+˙xS
33 31 32 bibi12d s=Sx+˙ysy+˙xsx+˙ySy+˙xS
34 33 2ralbidv s=SxXyXx+˙ysy+˙xsxXyXx+˙ySy+˙xS
35 34 elrab SsSubGrpG|xXyXx+˙ysy+˙xsSSubGrpGxXyXx+˙ySy+˙xS
36 30 35 bitrdi GGrpSNrmSGrpGSSubGrpGxXyXx+˙ySy+˙xS
37 4 6 36 pm5.21nii SNrmSGrpGSSubGrpGxXyXx+˙ySy+˙xS