Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isnsg.1 | |
|
isnsg.2 | |
||
Assertion | isnsg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnsg.1 | |
|
2 | isnsg.2 | |
|
3 | df-nsg | |
|
4 | 3 | mptrcl | |
5 | subgrcl | |
|
6 | 5 | adantr | |
7 | fveq2 | |
|
8 | fvexd | |
|
9 | fveq2 | |
|
10 | 9 1 | eqtr4di | |
11 | fvexd | |
|
12 | simpl | |
|
13 | 12 | fveq2d | |
14 | 13 2 | eqtr4di | |
15 | simplr | |
|
16 | simpr | |
|
17 | 16 | oveqd | |
18 | 17 | eleq1d | |
19 | 16 | oveqd | |
20 | 19 | eleq1d | |
21 | 18 20 | bibi12d | |
22 | 15 21 | raleqbidv | |
23 | 15 22 | raleqbidv | |
24 | 11 14 23 | sbcied2 | |
25 | 8 10 24 | sbcied2 | |
26 | 7 25 | rabeqbidv | |
27 | fvex | |
|
28 | 27 | rabex | |
29 | 26 3 28 | fvmpt | |
30 | 29 | eleq2d | |
31 | eleq2 | |
|
32 | eleq2 | |
|
33 | 31 32 | bibi12d | |
34 | 33 | 2ralbidv | |
35 | 34 | elrab | |
36 | 30 35 | bitrdi | |
37 | 4 6 36 | pm5.21nii | |