Description: A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | isnumbasgrplem1.b | |
|
Assertion | isnumbasgrplem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnumbasgrplem1.b | |
|
2 | ensymb | |
|
3 | bren | |
|
4 | 2 3 | bitri | |
5 | eqidd | |
|
6 | 1 | a1i | |
7 | f1ofo | |
|
8 | 7 | adantr | |
9 | simpr | |
|
10 | 5 6 8 9 | imasbas | |
11 | simpl | |
|
12 | ablgrp | |
|
13 | 12 | adantl | |
14 | 5 6 11 13 | imasgim | |
15 | brgici | |
|
16 | gicabl | |
|
17 | 14 15 16 | 3syl | |
18 | 9 17 | mpbid | |
19 | basfn | |
|
20 | ssv | |
|
21 | fnfvima | |
|
22 | 19 20 21 | mp3an12 | |
23 | 18 22 | syl | |
24 | 10 23 | eqeltrd | |
25 | 24 | ex | |
26 | 25 | exlimiv | |
27 | 26 | impcom | |
28 | 4 27 | sylan2b | |