Metamath Proof Explorer


Theorem isnumbasgrplem1

Description: A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015)

Ref Expression
Hypothesis isnumbasgrplem1.b B=BaseR
Assertion isnumbasgrplem1 RAbelCBCBaseAbel

Proof

Step Hyp Ref Expression
1 isnumbasgrplem1.b B=BaseR
2 ensymb CBBC
3 bren BCff:B1-1 ontoC
4 2 3 bitri CBff:B1-1 ontoC
5 eqidd f:B1-1 ontoCRAbelf𝑠R=f𝑠R
6 1 a1i f:B1-1 ontoCRAbelB=BaseR
7 f1ofo f:B1-1 ontoCf:BontoC
8 7 adantr f:B1-1 ontoCRAbelf:BontoC
9 simpr f:B1-1 ontoCRAbelRAbel
10 5 6 8 9 imasbas f:B1-1 ontoCRAbelC=Basef𝑠R
11 simpl f:B1-1 ontoCRAbelf:B1-1 ontoC
12 ablgrp RAbelRGrp
13 12 adantl f:B1-1 ontoCRAbelRGrp
14 5 6 11 13 imasgim f:B1-1 ontoCRAbelfRGrpIsof𝑠R
15 brgici fRGrpIsof𝑠RR𝑔f𝑠R
16 gicabl R𝑔f𝑠RRAbelf𝑠RAbel
17 14 15 16 3syl f:B1-1 ontoCRAbelRAbelf𝑠RAbel
18 9 17 mpbid f:B1-1 ontoCRAbelf𝑠RAbel
19 basfn BaseFnV
20 ssv AbelV
21 fnfvima BaseFnVAbelVf𝑠RAbelBasef𝑠RBaseAbel
22 19 20 21 mp3an12 f𝑠RAbelBasef𝑠RBaseAbel
23 18 22 syl f:B1-1 ontoCRAbelBasef𝑠RBaseAbel
24 10 23 eqeltrd f:B1-1 ontoCRAbelCBaseAbel
25 24 ex f:B1-1 ontoCRAbelCBaseAbel
26 25 exlimiv ff:B1-1 ontoCRAbelCBaseAbel
27 26 impcom RAbelff:B1-1 ontoCCBaseAbel
28 4 27 sylan2b RAbelCBCBaseAbel