Metamath Proof Explorer


Theorem isnumbasgrplem2

Description: If the (to be thought of as disjoint, although the proof does not require this) union of a set and its Hartogs number supports a group structure (more generally, a cancellative magma), then the set must be numerable. (Contributed by Stefan O'Rear, 9-Jul-2015)

Ref Expression
Assertion isnumbasgrplem2 SharSBaseGrpSdomcard

Proof

Step Hyp Ref Expression
1 basfn BaseFnV
2 ssv GrpV
3 fvelimab BaseFnVGrpVSharSBaseGrpxGrpBasex=SharS
4 1 2 3 mp2an SharSBaseGrpxGrpBasex=SharS
5 harcl harSOn
6 onenon harSOnharSdomcard
7 5 6 ax-mp harSdomcard
8 xpnum harSdomcardharSdomcardharS×harSdomcard
9 7 7 8 mp2an harS×harSdomcard
10 ssun1 SSharS
11 simpr xGrpBasex=SharSBasex=SharS
12 10 11 sseqtrrid xGrpBasex=SharSSBasex
13 fvex BasexV
14 13 ssex SBasexSV
15 12 14 syl xGrpBasex=SharSSV
16 7 a1i xGrpBasex=SharSharSdomcard
17 simp1l xGrpBasex=SharSaScharSxGrp
18 12 3ad2ant1 xGrpBasex=SharSaScharSSBasex
19 simp2 xGrpBasex=SharSaScharSaS
20 18 19 sseldd xGrpBasex=SharSaScharSaBasex
21 ssun2 harSSharS
22 21 11 sseqtrrid xGrpBasex=SharSharSBasex
23 22 3ad2ant1 xGrpBasex=SharSaScharSharSBasex
24 simp3 xGrpBasex=SharSaScharScharS
25 23 24 sseldd xGrpBasex=SharSaScharScBasex
26 eqid Basex=Basex
27 eqid +x=+x
28 26 27 grpcl xGrpaBasexcBasexa+xcBasex
29 17 20 25 28 syl3anc xGrpBasex=SharSaScharSa+xcBasex
30 simp1r xGrpBasex=SharSaScharSBasex=SharS
31 29 30 eleqtrd xGrpBasex=SharSaScharSa+xcSharS
32 simplll xGrpBasex=SharSaScharSdharSxGrp
33 22 ad2antrr xGrpBasex=SharSaScharSdharSharSBasex
34 simprl xGrpBasex=SharSaScharSdharScharS
35 33 34 sseldd xGrpBasex=SharSaScharSdharScBasex
36 simprr xGrpBasex=SharSaScharSdharSdharS
37 33 36 sseldd xGrpBasex=SharSaScharSdharSdBasex
38 12 ad2antrr xGrpBasex=SharSaScharSdharSSBasex
39 simplr xGrpBasex=SharSaScharSdharSaS
40 38 39 sseldd xGrpBasex=SharSaScharSdharSaBasex
41 26 27 grplcan xGrpcBasexdBasexaBasexa+xc=a+xdc=d
42 32 35 37 40 41 syl13anc xGrpBasex=SharSaScharSdharSa+xc=a+xdc=d
43 simplll xGrpBasex=SharSbharSaSdSxGrp
44 12 ad2antrr xGrpBasex=SharSbharSaSdSSBasex
45 simprr xGrpBasex=SharSbharSaSdSdS
46 44 45 sseldd xGrpBasex=SharSbharSaSdSdBasex
47 simprl xGrpBasex=SharSbharSaSdSaS
48 44 47 sseldd xGrpBasex=SharSbharSaSdSaBasex
49 22 ad2antrr xGrpBasex=SharSbharSaSdSharSBasex
50 simplr xGrpBasex=SharSbharSaSdSbharS
51 49 50 sseldd xGrpBasex=SharSbharSaSdSbBasex
52 26 27 grprcan xGrpdBasexaBasexbBasexd+xb=a+xbd=a
53 43 46 48 51 52 syl13anc xGrpBasex=SharSbharSaSdSd+xb=a+xbd=a
54 harndom ¬harSS
55 54 a1i xGrpBasex=SharS¬harSS
56 15 16 16 31 42 53 55 unxpwdom3 xGrpBasex=SharSS*harS×harS
57 wdomnumr harS×harSdomcardS*harS×harSSharS×harS
58 9 57 ax-mp S*harS×harSSharS×harS
59 56 58 sylib xGrpBasex=SharSSharS×harS
60 numdom harS×harSdomcardSharS×harSSdomcard
61 9 59 60 sylancr xGrpBasex=SharSSdomcard
62 61 rexlimiva xGrpBasex=SharSSdomcard
63 4 62 sylbi SharSBaseGrpSdomcard