Description: If the (to be thought of as disjoint, although the proof does not require this) union of a set and its Hartogs number supports a group structure (more generally, a cancellative magma), then the set must be numerable. (Contributed by Stefan O'Rear, 9-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isnumbasgrplem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basfn | |
|
2 | ssv | |
|
3 | fvelimab | |
|
4 | 1 2 3 | mp2an | |
5 | harcl | |
|
6 | onenon | |
|
7 | 5 6 | ax-mp | |
8 | xpnum | |
|
9 | 7 7 8 | mp2an | |
10 | ssun1 | |
|
11 | simpr | |
|
12 | 10 11 | sseqtrrid | |
13 | fvex | |
|
14 | 13 | ssex | |
15 | 12 14 | syl | |
16 | 7 | a1i | |
17 | simp1l | |
|
18 | 12 | 3ad2ant1 | |
19 | simp2 | |
|
20 | 18 19 | sseldd | |
21 | ssun2 | |
|
22 | 21 11 | sseqtrrid | |
23 | 22 | 3ad2ant1 | |
24 | simp3 | |
|
25 | 23 24 | sseldd | |
26 | eqid | |
|
27 | eqid | |
|
28 | 26 27 | grpcl | |
29 | 17 20 25 28 | syl3anc | |
30 | simp1r | |
|
31 | 29 30 | eleqtrd | |
32 | simplll | |
|
33 | 22 | ad2antrr | |
34 | simprl | |
|
35 | 33 34 | sseldd | |
36 | simprr | |
|
37 | 33 36 | sseldd | |
38 | 12 | ad2antrr | |
39 | simplr | |
|
40 | 38 39 | sseldd | |
41 | 26 27 | grplcan | |
42 | 32 35 37 40 41 | syl13anc | |
43 | simplll | |
|
44 | 12 | ad2antrr | |
45 | simprr | |
|
46 | 44 45 | sseldd | |
47 | simprl | |
|
48 | 44 47 | sseldd | |
49 | 22 | ad2antrr | |
50 | simplr | |
|
51 | 49 50 | sseldd | |
52 | 26 27 | grprcan | |
53 | 43 46 48 51 52 | syl13anc | |
54 | harndom | |
|
55 | 54 | a1i | |
56 | 15 16 16 31 42 53 55 | unxpwdom3 | |
57 | wdomnumr | |
|
58 | 9 57 | ax-mp | |
59 | 56 58 | sylib | |
60 | numdom | |
|
61 | 9 59 60 | sylancr | |
62 | 61 | rexlimiva | |
63 | 4 62 | sylbi | |