Metamath Proof Explorer


Theorem isosctrlem1

Description: Lemma for isosctr . (Contributed by Saveliy Skresanov, 30-Dec-2016)

Ref Expression
Assertion isosctrlem1 A A = 1 ¬ 1 = A log 1 A π

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 subcl 1 A 1 A
3 1 2 mpan A 1 A
4 3 adantr A ¬ 1 = A 1 A
5 subeq0 1 A 1 A = 0 1 = A
6 5 notbid 1 A ¬ 1 A = 0 ¬ 1 = A
7 1 6 mpan A ¬ 1 A = 0 ¬ 1 = A
8 7 biimpar A ¬ 1 = A ¬ 1 A = 0
9 8 neqned A ¬ 1 = A 1 A 0
10 4 9 logcld A ¬ 1 = A log 1 A
11 10 imcld A ¬ 1 = A log 1 A
12 11 3adant2 A A = 1 ¬ 1 = A log 1 A
13 3 3ad2ant1 A A = 1 ¬ 1 = A 1 A
14 9 3adant2 A A = 1 ¬ 1 = A 1 A 0
15 releabs A A A
16 15 adantr A A = 1 A A
17 breq2 A = 1 A A A 1
18 17 adantl A A = 1 A A A 1
19 16 18 mpbid A A = 1 A 1
20 recl A A
21 20 recnd A A
22 21 subidd A A A = 0
23 22 adantr A A 1 A A = 0
24 simpl A A 1 A
25 24 recld A A 1 A
26 1red A A 1 1
27 simpr A A 1 A 1
28 25 26 25 27 lesub1dd A A 1 A A 1 A
29 23 28 eqbrtrrd A A 1 0 1 A
30 19 29 syldan A A = 1 0 1 A
31 resub 1 A 1 A = 1 A
32 re1 1 = 1
33 32 oveq1i 1 A = 1 A
34 31 33 syl6eq 1 A 1 A = 1 A
35 1 34 mpan A 1 A = 1 A
36 35 adantr A A = 1 1 A = 1 A
37 30 36 breqtrrd A A = 1 0 1 A
38 37 3adant3 A A = 1 ¬ 1 = A 0 1 A
39 neghalfpirx π 2 *
40 halfpire π 2
41 40 rexri π 2 *
42 argrege0 1 A 1 A 0 0 1 A log 1 A π 2 π 2
43 iccleub π 2 * π 2 * log 1 A π 2 π 2 log 1 A π 2
44 39 41 42 43 mp3an12i 1 A 1 A 0 0 1 A log 1 A π 2
45 13 14 38 44 syl3anc A A = 1 ¬ 1 = A log 1 A π 2
46 pirp π +
47 rphalflt π + π 2 < π
48 46 47 ax-mp π 2 < π
49 45 48 jctir A A = 1 ¬ 1 = A log 1 A π 2 π 2 < π
50 pire π
51 50 a1i A ¬ 1 = A π
52 51 rehalfcld A ¬ 1 = A π 2
53 lelttr log 1 A π 2 π log 1 A π 2 π 2 < π log 1 A < π
54 11 52 51 53 syl3anc A ¬ 1 = A log 1 A π 2 π 2 < π log 1 A < π
55 54 3adant2 A A = 1 ¬ 1 = A log 1 A π 2 π 2 < π log 1 A < π
56 49 55 mpd A A = 1 ¬ 1 = A log 1 A < π
57 12 56 ltned A A = 1 ¬ 1 = A log 1 A π