Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isrhmd.b | |
|
isrhmd.o | |
||
isrhmd.n | |
||
isrhmd.t | |
||
isrhmd.u | |
||
isrhmd.r | |
||
isrhmd.s | |
||
isrhmd.ho | |
||
isrhmd.ht | |
||
isrhm2d.f | |
||
Assertion | isrhm2d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrhmd.b | |
|
2 | isrhmd.o | |
|
3 | isrhmd.n | |
|
4 | isrhmd.t | |
|
5 | isrhmd.u | |
|
6 | isrhmd.r | |
|
7 | isrhmd.s | |
|
8 | isrhmd.ho | |
|
9 | isrhmd.ht | |
|
10 | isrhm2d.f | |
|
11 | eqid | |
|
12 | 11 | ringmgp | |
13 | 6 12 | syl | |
14 | eqid | |
|
15 | 14 | ringmgp | |
16 | 7 15 | syl | |
17 | eqid | |
|
18 | 1 17 | ghmf | |
19 | 10 18 | syl | |
20 | 9 | ralrimivva | |
21 | 11 2 | ringidval | |
22 | 21 | fveq2i | |
23 | 14 3 | ringidval | |
24 | 8 22 23 | 3eqtr3g | |
25 | 19 20 24 | 3jca | |
26 | 11 1 | mgpbas | |
27 | 14 17 | mgpbas | |
28 | 11 4 | mgpplusg | |
29 | 14 5 | mgpplusg | |
30 | eqid | |
|
31 | eqid | |
|
32 | 26 27 28 29 30 31 | ismhm | |
33 | 13 16 25 32 | syl21anbrc | |
34 | 10 33 | jca | |
35 | 11 14 | isrhm | |
36 | 6 7 34 35 | syl21anbrc | |