Metamath Proof Explorer


Theorem isrhm2d

Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015)

Ref Expression
Hypotheses isrhmd.b B=BaseR
isrhmd.o 1˙=1R
isrhmd.n N=1S
isrhmd.t ·˙=R
isrhmd.u ×˙=S
isrhmd.r φRRing
isrhmd.s φSRing
isrhmd.ho φF1˙=N
isrhmd.ht φxByBFx·˙y=Fx×˙Fy
isrhm2d.f φFRGrpHomS
Assertion isrhm2d φFRRingHomS

Proof

Step Hyp Ref Expression
1 isrhmd.b B=BaseR
2 isrhmd.o 1˙=1R
3 isrhmd.n N=1S
4 isrhmd.t ·˙=R
5 isrhmd.u ×˙=S
6 isrhmd.r φRRing
7 isrhmd.s φSRing
8 isrhmd.ho φF1˙=N
9 isrhmd.ht φxByBFx·˙y=Fx×˙Fy
10 isrhm2d.f φFRGrpHomS
11 eqid mulGrpR=mulGrpR
12 11 ringmgp RRingmulGrpRMnd
13 6 12 syl φmulGrpRMnd
14 eqid mulGrpS=mulGrpS
15 14 ringmgp SRingmulGrpSMnd
16 7 15 syl φmulGrpSMnd
17 eqid BaseS=BaseS
18 1 17 ghmf FRGrpHomSF:BBaseS
19 10 18 syl φF:BBaseS
20 9 ralrimivva φxByBFx·˙y=Fx×˙Fy
21 11 2 ringidval 1˙=0mulGrpR
22 21 fveq2i F1˙=F0mulGrpR
23 14 3 ringidval N=0mulGrpS
24 8 22 23 3eqtr3g φF0mulGrpR=0mulGrpS
25 19 20 24 3jca φF:BBaseSxByBFx·˙y=Fx×˙FyF0mulGrpR=0mulGrpS
26 11 1 mgpbas B=BasemulGrpR
27 14 17 mgpbas BaseS=BasemulGrpS
28 11 4 mgpplusg ·˙=+mulGrpR
29 14 5 mgpplusg ×˙=+mulGrpS
30 eqid 0mulGrpR=0mulGrpR
31 eqid 0mulGrpS=0mulGrpS
32 26 27 28 29 30 31 ismhm FmulGrpRMndHommulGrpSmulGrpRMndmulGrpSMndF:BBaseSxByBFx·˙y=Fx×˙FyF0mulGrpR=0mulGrpS
33 13 16 25 32 syl21anbrc φFmulGrpRMndHommulGrpS
34 10 33 jca φFRGrpHomSFmulGrpRMndHommulGrpS
35 11 14 isrhm FRRingHomSRRingSRingFRGrpHomSFmulGrpRMndHommulGrpS
36 6 7 34 35 syl21anbrc φFRRingHomS