Metamath Proof Explorer


Theorem isslmd

Description: The predicate "is a semimodule". (Contributed by NM, 4-Nov-2013) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses isslmd.v V = Base W
isslmd.a + ˙ = + W
isslmd.s · ˙ = W
isslmd.0 0 ˙ = 0 W
isslmd.f F = Scalar W
isslmd.k K = Base F
isslmd.p ˙ = + F
isslmd.t × ˙ = F
isslmd.u 1 ˙ = 1 F
isslmd.o O = 0 F
Assertion isslmd W SLMod W CMnd F SRing q K r K x V w V r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙

Proof

Step Hyp Ref Expression
1 isslmd.v V = Base W
2 isslmd.a + ˙ = + W
3 isslmd.s · ˙ = W
4 isslmd.0 0 ˙ = 0 W
5 isslmd.f F = Scalar W
6 isslmd.k K = Base F
7 isslmd.p ˙ = + F
8 isslmd.t × ˙ = F
9 isslmd.u 1 ˙ = 1 F
10 isslmd.o O = 0 F
11 fvex Base g V
12 fvex + g V
13 fvex g V
14 fvex Scalar g V
15 fvex Base f V
16 fvex + f V
17 fvex f V
18 simp1 k = Base f p = + f t = f k = Base f
19 simp2 k = Base f p = + f t = f p = + f
20 19 oveqd k = Base f p = + f t = f q p r = q + f r
21 20 oveq1d k = Base f p = + f t = f q p r s w = q + f r s w
22 21 eqeq1d k = Base f p = + f t = f q p r s w = q s w a r s w q + f r s w = q s w a r s w
23 22 3anbi3d k = Base f p = + f t = f r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w
24 simp3 k = Base f p = + f t = f t = f
25 24 oveqd k = Base f p = + f t = f q t r = q f r
26 25 oveq1d k = Base f p = + f t = f q t r s w = q f r s w
27 26 eqeq1d k = Base f p = + f t = f q t r s w = q s r s w q f r s w = q s r s w
28 27 3anbi1d k = Base f p = + f t = f q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g
29 23 28 anbi12d k = Base f p = + f t = f r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g
30 29 2ralbidv k = Base f p = + f t = f x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g x v w v r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g
31 18 30 raleqbidv k = Base f p = + f t = f r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g r Base f x v w v r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g
32 18 31 raleqbidv k = Base f p = + f t = f q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g q Base f r Base f x v w v r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g
33 32 anbi2d k = Base f p = + f t = f f SRing q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g f SRing q Base f r Base f x v w v r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g
34 15 16 17 33 sbc3ie [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f SRing q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g f SRing q Base f r Base f x v w v r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g
35 simpr s = g f = Scalar g f = Scalar g
36 35 eleq1d s = g f = Scalar g f SRing Scalar g SRing
37 35 fveq2d s = g f = Scalar g Base f = Base Scalar g
38 simpl s = g f = Scalar g s = g
39 38 oveqd s = g f = Scalar g r s w = r g w
40 39 eleq1d s = g f = Scalar g r s w v r g w v
41 38 oveqd s = g f = Scalar g r s w a x = r g w a x
42 38 oveqd s = g f = Scalar g r s x = r g x
43 39 42 oveq12d s = g f = Scalar g r s w a r s x = r g w a r g x
44 41 43 eqeq12d s = g f = Scalar g r s w a x = r s w a r s x r g w a x = r g w a r g x
45 35 fveq2d s = g f = Scalar g + f = + Scalar g
46 45 oveqd s = g f = Scalar g q + f r = q + Scalar g r
47 eqidd s = g f = Scalar g w = w
48 38 46 47 oveq123d s = g f = Scalar g q + f r s w = q + Scalar g r g w
49 38 oveqd s = g f = Scalar g q s w = q g w
50 49 39 oveq12d s = g f = Scalar g q s w a r s w = q g w a r g w
51 48 50 eqeq12d s = g f = Scalar g q + f r s w = q s w a r s w q + Scalar g r g w = q g w a r g w
52 40 44 51 3anbi123d s = g f = Scalar g r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w
53 35 fveq2d s = g f = Scalar g f = Scalar g
54 53 oveqd s = g f = Scalar g q f r = q Scalar g r
55 38 54 47 oveq123d s = g f = Scalar g q f r s w = q Scalar g r g w
56 eqidd s = g f = Scalar g q = q
57 38 56 39 oveq123d s = g f = Scalar g q s r s w = q g r g w
58 55 57 eqeq12d s = g f = Scalar g q f r s w = q s r s w q Scalar g r g w = q g r g w
59 35 fveq2d s = g f = Scalar g 1 f = 1 Scalar g
60 38 59 47 oveq123d s = g f = Scalar g 1 f s w = 1 Scalar g g w
61 60 eqeq1d s = g f = Scalar g 1 f s w = w 1 Scalar g g w = w
62 35 fveq2d s = g f = Scalar g 0 f = 0 Scalar g
63 38 62 47 oveq123d s = g f = Scalar g 0 f s w = 0 Scalar g g w
64 63 eqeq1d s = g f = Scalar g 0 f s w = 0 g 0 Scalar g g w = 0 g
65 58 61 64 3anbi123d s = g f = Scalar g q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
66 52 65 anbi12d s = g f = Scalar g r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
67 66 2ralbidv s = g f = Scalar g x v w v r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g x v w v r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
68 37 67 raleqbidv s = g f = Scalar g r Base f x v w v r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g r Base Scalar g x v w v r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
69 37 68 raleqbidv s = g f = Scalar g q Base f r Base f x v w v r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g q Base Scalar g r Base Scalar g x v w v r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
70 36 69 anbi12d s = g f = Scalar g f SRing q Base f r Base f x v w v r s w v r s w a x = r s w a r s x q + f r s w = q s w a r s w q f r s w = q s r s w 1 f s w = w 0 f s w = 0 g Scalar g SRing q Base Scalar g r Base Scalar g x v w v r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
71 34 70 syl5bb s = g f = Scalar g [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f SRing q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g Scalar g SRing q Base Scalar g r Base Scalar g x v w v r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
72 13 14 71 sbc2ie [˙ g / s]˙ [˙ Scalar g / f]˙ [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f SRing q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g Scalar g SRing q Base Scalar g r Base Scalar g x v w v r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
73 simpl v = Base g a = + g v = Base g
74 73 eleq2d v = Base g a = + g r g w v r g w Base g
75 simpr v = Base g a = + g a = + g
76 75 oveqd v = Base g a = + g w a x = w + g x
77 76 oveq2d v = Base g a = + g r g w a x = r g w + g x
78 75 oveqd v = Base g a = + g r g w a r g x = r g w + g r g x
79 77 78 eqeq12d v = Base g a = + g r g w a x = r g w a r g x r g w + g x = r g w + g r g x
80 75 oveqd v = Base g a = + g q g w a r g w = q g w + g r g w
81 80 eqeq2d v = Base g a = + g q + Scalar g r g w = q g w a r g w q + Scalar g r g w = q g w + g r g w
82 74 79 81 3anbi123d v = Base g a = + g r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w
83 82 anbi1d v = Base g a = + g r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
84 73 83 raleqbidv v = Base g a = + g w v r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g w Base g r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
85 73 84 raleqbidv v = Base g a = + g x v w v r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g x Base g w Base g r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
86 85 2ralbidv v = Base g a = + g q Base Scalar g r Base Scalar g x v w v r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g q Base Scalar g r Base Scalar g x Base g w Base g r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
87 86 anbi2d v = Base g a = + g Scalar g SRing q Base Scalar g r Base Scalar g x v w v r g w v r g w a x = r g w a r g x q + Scalar g r g w = q g w a r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g Scalar g SRing q Base Scalar g r Base Scalar g x Base g w Base g r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
88 72 87 syl5bb v = Base g a = + g [˙ g / s]˙ [˙ Scalar g / f]˙ [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f SRing q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g Scalar g SRing q Base Scalar g r Base Scalar g x Base g w Base g r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
89 11 12 88 sbc2ie [˙Base g / v]˙ [˙+ g / a]˙ [˙ g / s]˙ [˙ Scalar g / f]˙ [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f SRing q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g Scalar g SRing q Base Scalar g r Base Scalar g x Base g w Base g r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g
90 fveq2 g = W Scalar g = Scalar W
91 90 5 eqtr4di g = W Scalar g = F
92 91 eleq1d g = W Scalar g SRing F SRing
93 91 fveq2d g = W Base Scalar g = Base F
94 93 6 eqtr4di g = W Base Scalar g = K
95 fveq2 g = W Base g = Base W
96 95 1 eqtr4di g = W Base g = V
97 fveq2 g = W g = W
98 97 3 eqtr4di g = W g = · ˙
99 98 oveqd g = W r g w = r · ˙ w
100 99 96 eleq12d g = W r g w Base g r · ˙ w V
101 eqidd g = W r = r
102 fveq2 g = W + g = + W
103 102 2 eqtr4di g = W + g = + ˙
104 103 oveqd g = W w + g x = w + ˙ x
105 98 101 104 oveq123d g = W r g w + g x = r · ˙ w + ˙ x
106 98 oveqd g = W r g x = r · ˙ x
107 103 99 106 oveq123d g = W r g w + g r g x = r · ˙ w + ˙ r · ˙ x
108 105 107 eqeq12d g = W r g w + g x = r g w + g r g x r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x
109 91 fveq2d g = W + Scalar g = + F
110 109 7 eqtr4di g = W + Scalar g = ˙
111 110 oveqd g = W q + Scalar g r = q ˙ r
112 eqidd g = W w = w
113 98 111 112 oveq123d g = W q + Scalar g r g w = q ˙ r · ˙ w
114 98 oveqd g = W q g w = q · ˙ w
115 103 114 99 oveq123d g = W q g w + g r g w = q · ˙ w + ˙ r · ˙ w
116 113 115 eqeq12d g = W q + Scalar g r g w = q g w + g r g w q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w
117 100 108 116 3anbi123d g = W r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w
118 91 fveq2d g = W Scalar g = F
119 118 8 eqtr4di g = W Scalar g = × ˙
120 119 oveqd g = W q Scalar g r = q × ˙ r
121 98 120 112 oveq123d g = W q Scalar g r g w = q × ˙ r · ˙ w
122 eqidd g = W q = q
123 98 122 99 oveq123d g = W q g r g w = q · ˙ r · ˙ w
124 121 123 eqeq12d g = W q Scalar g r g w = q g r g w q × ˙ r · ˙ w = q · ˙ r · ˙ w
125 91 fveq2d g = W 1 Scalar g = 1 F
126 125 9 eqtr4di g = W 1 Scalar g = 1 ˙
127 98 126 112 oveq123d g = W 1 Scalar g g w = 1 ˙ · ˙ w
128 127 eqeq1d g = W 1 Scalar g g w = w 1 ˙ · ˙ w = w
129 91 fveq2d g = W 0 Scalar g = 0 F
130 129 10 eqtr4di g = W 0 Scalar g = O
131 98 130 112 oveq123d g = W 0 Scalar g g w = O · ˙ w
132 fveq2 g = W 0 g = 0 W
133 132 4 eqtr4di g = W 0 g = 0 ˙
134 131 133 eqeq12d g = W 0 Scalar g g w = 0 g O · ˙ w = 0 ˙
135 124 128 134 3anbi123d g = W q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙
136 117 135 anbi12d g = W r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙
137 96 136 raleqbidv g = W w Base g r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g w V r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙
138 96 137 raleqbidv g = W x Base g w Base g r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g x V w V r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙
139 94 138 raleqbidv g = W r Base Scalar g x Base g w Base g r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g r K x V w V r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙
140 94 139 raleqbidv g = W q Base Scalar g r Base Scalar g x Base g w Base g r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g q K r K x V w V r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙
141 92 140 anbi12d g = W Scalar g SRing q Base Scalar g r Base Scalar g x Base g w Base g r g w Base g r g w + g x = r g w + g r g x q + Scalar g r g w = q g w + g r g w q Scalar g r g w = q g r g w 1 Scalar g g w = w 0 Scalar g g w = 0 g F SRing q K r K x V w V r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙
142 89 141 syl5bb g = W [˙Base g / v]˙ [˙+ g / a]˙ [˙ g / s]˙ [˙ Scalar g / f]˙ [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f SRing q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g F SRing q K r K x V w V r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙
143 df-slmd SLMod = g CMnd | [˙Base g / v]˙ [˙+ g / a]˙ [˙ g / s]˙ [˙ Scalar g / f]˙ [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f SRing q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w 0 f s w = 0 g
144 142 143 elrab2 W SLMod W CMnd F SRing q K r K x V w V r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙
145 3anass W CMnd F SRing q K r K x V w V r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙ W CMnd F SRing q K r K x V w V r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙
146 144 145 bitr4i W SLMod W CMnd F SRing q K r K x V w V r · ˙ w V r · ˙ w + ˙ x = r · ˙ w + ˙ r · ˙ x q ˙ r · ˙ w = q · ˙ w + ˙ r · ˙ w q × ˙ r · ˙ w = q · ˙ r · ˙ w 1 ˙ · ˙ w = w O · ˙ w = 0 ˙