Metamath Proof Explorer


Theorem isslmd

Description: The predicate "is a semimodule". (Contributed by NM, 4-Nov-2013) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses isslmd.v V=BaseW
isslmd.a +˙=+W
isslmd.s ·˙=W
isslmd.0 0˙=0W
isslmd.f F=ScalarW
isslmd.k K=BaseF
isslmd.p ˙=+F
isslmd.t ×˙=F
isslmd.u 1˙=1F
isslmd.o O=0F
Assertion isslmd WSLModWCMndFSRingqKrKxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙

Proof

Step Hyp Ref Expression
1 isslmd.v V=BaseW
2 isslmd.a +˙=+W
3 isslmd.s ·˙=W
4 isslmd.0 0˙=0W
5 isslmd.f F=ScalarW
6 isslmd.k K=BaseF
7 isslmd.p ˙=+F
8 isslmd.t ×˙=F
9 isslmd.u 1˙=1F
10 isslmd.o O=0F
11 fvex BasegV
12 fvex +gV
13 fvex gV
14 fvex ScalargV
15 fvex BasefV
16 fvex +fV
17 fvex fV
18 simp1 k=Basefp=+ft=fk=Basef
19 simp2 k=Basefp=+ft=fp=+f
20 19 oveqd k=Basefp=+ft=fqpr=q+fr
21 20 oveq1d k=Basefp=+ft=fqprsw=q+frsw
22 21 eqeq1d k=Basefp=+ft=fqprsw=qswarswq+frsw=qswarsw
23 22 3anbi3d k=Basefp=+ft=frswvrswax=rswarsxqprsw=qswarswrswvrswax=rswarsxq+frsw=qswarsw
24 simp3 k=Basefp=+ft=ft=f
25 24 oveqd k=Basefp=+ft=fqtr=qfr
26 25 oveq1d k=Basefp=+ft=fqtrsw=qfrsw
27 26 eqeq1d k=Basefp=+ft=fqtrsw=qsrswqfrsw=qsrsw
28 27 3anbi1d k=Basefp=+ft=fqtrsw=qsrsw1fsw=w0fsw=0gqfrsw=qsrsw1fsw=w0fsw=0g
29 23 28 anbi12d k=Basefp=+ft=frswvrswax=rswarsxqprsw=qswarswqtrsw=qsrsw1fsw=w0fsw=0grswvrswax=rswarsxq+frsw=qswarswqfrsw=qsrsw1fsw=w0fsw=0g
30 29 2ralbidv k=Basefp=+ft=fxvwvrswvrswax=rswarsxqprsw=qswarswqtrsw=qsrsw1fsw=w0fsw=0gxvwvrswvrswax=rswarsxq+frsw=qswarswqfrsw=qsrsw1fsw=w0fsw=0g
31 18 30 raleqbidv k=Basefp=+ft=frkxvwvrswvrswax=rswarsxqprsw=qswarswqtrsw=qsrsw1fsw=w0fsw=0grBasefxvwvrswvrswax=rswarsxq+frsw=qswarswqfrsw=qsrsw1fsw=w0fsw=0g
32 18 31 raleqbidv k=Basefp=+ft=fqkrkxvwvrswvrswax=rswarsxqprsw=qswarswqtrsw=qsrsw1fsw=w0fsw=0gqBasefrBasefxvwvrswvrswax=rswarsxq+frsw=qswarswqfrsw=qsrsw1fsw=w0fsw=0g
33 32 anbi2d k=Basefp=+ft=ffSRingqkrkxvwvrswvrswax=rswarsxqprsw=qswarswqtrsw=qsrsw1fsw=w0fsw=0gfSRingqBasefrBasefxvwvrswvrswax=rswarsxq+frsw=qswarswqfrsw=qsrsw1fsw=w0fsw=0g
34 15 16 17 33 sbc3ie [˙Basef/k]˙[˙+f/p]˙[˙f/t]˙fSRingqkrkxvwvrswvrswax=rswarsxqprsw=qswarswqtrsw=qsrsw1fsw=w0fsw=0gfSRingqBasefrBasefxvwvrswvrswax=rswarsxq+frsw=qswarswqfrsw=qsrsw1fsw=w0fsw=0g
35 simpr s=gf=Scalargf=Scalarg
36 35 eleq1d s=gf=ScalargfSRingScalargSRing
37 35 fveq2d s=gf=ScalargBasef=BaseScalarg
38 simpl s=gf=Scalargs=g
39 38 oveqd s=gf=Scalargrsw=rgw
40 39 eleq1d s=gf=Scalargrswvrgwv
41 38 oveqd s=gf=Scalargrswax=rgwax
42 38 oveqd s=gf=Scalargrsx=rgx
43 39 42 oveq12d s=gf=Scalargrswarsx=rgwargx
44 41 43 eqeq12d s=gf=Scalargrswax=rswarsxrgwax=rgwargx
45 35 fveq2d s=gf=Scalarg+f=+Scalarg
46 45 oveqd s=gf=Scalargq+fr=q+Scalargr
47 eqidd s=gf=Scalargw=w
48 38 46 47 oveq123d s=gf=Scalargq+frsw=q+Scalargrgw
49 38 oveqd s=gf=Scalargqsw=qgw
50 49 39 oveq12d s=gf=Scalargqswarsw=qgwargw
51 48 50 eqeq12d s=gf=Scalargq+frsw=qswarswq+Scalargrgw=qgwargw
52 40 44 51 3anbi123d s=gf=Scalargrswvrswax=rswarsxq+frsw=qswarswrgwvrgwax=rgwargxq+Scalargrgw=qgwargw
53 35 fveq2d s=gf=Scalargf=Scalarg
54 53 oveqd s=gf=Scalargqfr=qScalargr
55 38 54 47 oveq123d s=gf=Scalargqfrsw=qScalargrgw
56 eqidd s=gf=Scalargq=q
57 38 56 39 oveq123d s=gf=Scalargqsrsw=qgrgw
58 55 57 eqeq12d s=gf=Scalargqfrsw=qsrswqScalargrgw=qgrgw
59 35 fveq2d s=gf=Scalarg1f=1Scalarg
60 38 59 47 oveq123d s=gf=Scalarg1fsw=1Scalarggw
61 60 eqeq1d s=gf=Scalarg1fsw=w1Scalarggw=w
62 35 fveq2d s=gf=Scalarg0f=0Scalarg
63 38 62 47 oveq123d s=gf=Scalarg0fsw=0Scalarggw
64 63 eqeq1d s=gf=Scalarg0fsw=0g0Scalarggw=0g
65 58 61 64 3anbi123d s=gf=Scalargqfrsw=qsrsw1fsw=w0fsw=0gqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
66 52 65 anbi12d s=gf=Scalargrswvrswax=rswarsxq+frsw=qswarswqfrsw=qsrsw1fsw=w0fsw=0grgwvrgwax=rgwargxq+Scalargrgw=qgwargwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
67 66 2ralbidv s=gf=Scalargxvwvrswvrswax=rswarsxq+frsw=qswarswqfrsw=qsrsw1fsw=w0fsw=0gxvwvrgwvrgwax=rgwargxq+Scalargrgw=qgwargwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
68 37 67 raleqbidv s=gf=ScalargrBasefxvwvrswvrswax=rswarsxq+frsw=qswarswqfrsw=qsrsw1fsw=w0fsw=0grBaseScalargxvwvrgwvrgwax=rgwargxq+Scalargrgw=qgwargwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
69 37 68 raleqbidv s=gf=ScalargqBasefrBasefxvwvrswvrswax=rswarsxq+frsw=qswarswqfrsw=qsrsw1fsw=w0fsw=0gqBaseScalargrBaseScalargxvwvrgwvrgwax=rgwargxq+Scalargrgw=qgwargwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
70 36 69 anbi12d s=gf=ScalargfSRingqBasefrBasefxvwvrswvrswax=rswarsxq+frsw=qswarswqfrsw=qsrsw1fsw=w0fsw=0gScalargSRingqBaseScalargrBaseScalargxvwvrgwvrgwax=rgwargxq+Scalargrgw=qgwargwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
71 34 70 bitrid s=gf=Scalarg[˙Basef/k]˙[˙+f/p]˙[˙f/t]˙fSRingqkrkxvwvrswvrswax=rswarsxqprsw=qswarswqtrsw=qsrsw1fsw=w0fsw=0gScalargSRingqBaseScalargrBaseScalargxvwvrgwvrgwax=rgwargxq+Scalargrgw=qgwargwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
72 13 14 71 sbc2ie [˙g/s]˙[˙Scalarg/f]˙[˙Basef/k]˙[˙+f/p]˙[˙f/t]˙fSRingqkrkxvwvrswvrswax=rswarsxqprsw=qswarswqtrsw=qsrsw1fsw=w0fsw=0gScalargSRingqBaseScalargrBaseScalargxvwvrgwvrgwax=rgwargxq+Scalargrgw=qgwargwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
73 simpl v=Basega=+gv=Baseg
74 73 eleq2d v=Basega=+grgwvrgwBaseg
75 simpr v=Basega=+ga=+g
76 75 oveqd v=Basega=+gwax=w+gx
77 76 oveq2d v=Basega=+grgwax=rgw+gx
78 75 oveqd v=Basega=+grgwargx=rgw+grgx
79 77 78 eqeq12d v=Basega=+grgwax=rgwargxrgw+gx=rgw+grgx
80 75 oveqd v=Basega=+gqgwargw=qgw+grgw
81 80 eqeq2d v=Basega=+gq+Scalargrgw=qgwargwq+Scalargrgw=qgw+grgw
82 74 79 81 3anbi123d v=Basega=+grgwvrgwax=rgwargxq+Scalargrgw=qgwargwrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgw
83 82 anbi1d v=Basega=+grgwvrgwax=rgwargxq+Scalargrgw=qgwargwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0grgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
84 73 83 raleqbidv v=Basega=+gwvrgwvrgwax=rgwargxq+Scalargrgw=qgwargwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0gwBasegrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
85 73 84 raleqbidv v=Basega=+gxvwvrgwvrgwax=rgwargxq+Scalargrgw=qgwargwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0gxBasegwBasegrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
86 85 2ralbidv v=Basega=+gqBaseScalargrBaseScalargxvwvrgwvrgwax=rgwargxq+Scalargrgw=qgwargwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0gqBaseScalargrBaseScalargxBasegwBasegrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
87 86 anbi2d v=Basega=+gScalargSRingqBaseScalargrBaseScalargxvwvrgwvrgwax=rgwargxq+Scalargrgw=qgwargwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0gScalargSRingqBaseScalargrBaseScalargxBasegwBasegrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
88 72 87 bitrid v=Basega=+g[˙g/s]˙[˙Scalarg/f]˙[˙Basef/k]˙[˙+f/p]˙[˙f/t]˙fSRingqkrkxvwvrswvrswax=rswarsxqprsw=qswarswqtrsw=qsrsw1fsw=w0fsw=0gScalargSRingqBaseScalargrBaseScalargxBasegwBasegrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
89 11 12 88 sbc2ie [˙Baseg/v]˙[˙+g/a]˙[˙g/s]˙[˙Scalarg/f]˙[˙Basef/k]˙[˙+f/p]˙[˙f/t]˙fSRingqkrkxvwvrswvrswax=rswarsxqprsw=qswarswqtrsw=qsrsw1fsw=w0fsw=0gScalargSRingqBaseScalargrBaseScalargxBasegwBasegrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0g
90 fveq2 g=WScalarg=ScalarW
91 90 5 eqtr4di g=WScalarg=F
92 91 eleq1d g=WScalargSRingFSRing
93 91 fveq2d g=WBaseScalarg=BaseF
94 93 6 eqtr4di g=WBaseScalarg=K
95 fveq2 g=WBaseg=BaseW
96 95 1 eqtr4di g=WBaseg=V
97 fveq2 g=Wg=W
98 97 3 eqtr4di g=Wg=·˙
99 98 oveqd g=Wrgw=r·˙w
100 99 96 eleq12d g=WrgwBasegr·˙wV
101 eqidd g=Wr=r
102 fveq2 g=W+g=+W
103 102 2 eqtr4di g=W+g=+˙
104 103 oveqd g=Ww+gx=w+˙x
105 98 101 104 oveq123d g=Wrgw+gx=r·˙w+˙x
106 98 oveqd g=Wrgx=r·˙x
107 103 99 106 oveq123d g=Wrgw+grgx=r·˙w+˙r·˙x
108 105 107 eqeq12d g=Wrgw+gx=rgw+grgxr·˙w+˙x=r·˙w+˙r·˙x
109 91 fveq2d g=W+Scalarg=+F
110 109 7 eqtr4di g=W+Scalarg=˙
111 110 oveqd g=Wq+Scalargr=q˙r
112 eqidd g=Ww=w
113 98 111 112 oveq123d g=Wq+Scalargrgw=q˙r·˙w
114 98 oveqd g=Wqgw=q·˙w
115 103 114 99 oveq123d g=Wqgw+grgw=q·˙w+˙r·˙w
116 113 115 eqeq12d g=Wq+Scalargrgw=qgw+grgwq˙r·˙w=q·˙w+˙r·˙w
117 100 108 116 3anbi123d g=WrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙w
118 91 fveq2d g=WScalarg=F
119 118 8 eqtr4di g=WScalarg=×˙
120 119 oveqd g=WqScalargr=q×˙r
121 98 120 112 oveq123d g=WqScalargrgw=q×˙r·˙w
122 eqidd g=Wq=q
123 98 122 99 oveq123d g=Wqgrgw=q·˙r·˙w
124 121 123 eqeq12d g=WqScalargrgw=qgrgwq×˙r·˙w=q·˙r·˙w
125 91 fveq2d g=W1Scalarg=1F
126 125 9 eqtr4di g=W1Scalarg=1˙
127 98 126 112 oveq123d g=W1Scalarggw=1˙·˙w
128 127 eqeq1d g=W1Scalarggw=w1˙·˙w=w
129 91 fveq2d g=W0Scalarg=0F
130 129 10 eqtr4di g=W0Scalarg=O
131 98 130 112 oveq123d g=W0Scalarggw=O·˙w
132 fveq2 g=W0g=0W
133 132 4 eqtr4di g=W0g=0˙
134 131 133 eqeq12d g=W0Scalarggw=0gO·˙w=0˙
135 124 128 134 3anbi123d g=WqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0gq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙
136 117 135 anbi12d g=WrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0gr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙
137 96 136 raleqbidv g=WwBasegrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0gwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙
138 96 137 raleqbidv g=WxBasegwBasegrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0gxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙
139 94 138 raleqbidv g=WrBaseScalargxBasegwBasegrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0grKxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙
140 94 139 raleqbidv g=WqBaseScalargrBaseScalargxBasegwBasegrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0gqKrKxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙
141 92 140 anbi12d g=WScalargSRingqBaseScalargrBaseScalargxBasegwBasegrgwBasegrgw+gx=rgw+grgxq+Scalargrgw=qgw+grgwqScalargrgw=qgrgw1Scalarggw=w0Scalarggw=0gFSRingqKrKxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙
142 89 141 bitrid g=W[˙Baseg/v]˙[˙+g/a]˙[˙g/s]˙[˙Scalarg/f]˙[˙Basef/k]˙[˙+f/p]˙[˙f/t]˙fSRingqkrkxvwvrswvrswax=rswarsxqprsw=qswarswqtrsw=qsrsw1fsw=w0fsw=0gFSRingqKrKxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙
143 df-slmd SLMod=gCMnd|[˙Baseg/v]˙[˙+g/a]˙[˙g/s]˙[˙Scalarg/f]˙[˙Basef/k]˙[˙+f/p]˙[˙f/t]˙fSRingqkrkxvwvrswvrswax=rswarsxqprsw=qswarswqtrsw=qsrsw1fsw=w0fsw=0g
144 142 143 elrab2 WSLModWCMndFSRingqKrKxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙
145 3anass WCMndFSRingqKrKxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙WCMndFSRingqKrKxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙
146 144 145 bitr4i WSLModWCMndFSRingqKrKxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wO·˙w=0˙