Description: The property of being a Sylow subgroup. A Sylow P -subgroup is a P -group which has no proper supersets that are also P -groups. (Contributed by Mario Carneiro, 16-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isslw | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-slw | |
|
2 | 1 | elmpocl | |
3 | simp1 | |
|
4 | subgrcl | |
|
5 | 4 | 3ad2ant2 | |
6 | 3 5 | jca | |
7 | simpr | |
|
8 | 7 | fveq2d | |
9 | simpl | |
|
10 | 7 | oveq1d | |
11 | 9 10 | breq12d | |
12 | 11 | anbi2d | |
13 | 12 | bibi1d | |
14 | 8 13 | raleqbidv | |
15 | 8 14 | rabeqbidv | |
16 | fvex | |
|
17 | 16 | rabex | |
18 | 15 1 17 | ovmpoa | |
19 | 18 | eleq2d | |
20 | cleq1lem | |
|
21 | eqeq1 | |
|
22 | 20 21 | bibi12d | |
23 | 22 | ralbidv | |
24 | 23 | elrab | |
25 | 19 24 | bitrdi | |
26 | simpl | |
|
27 | 26 | biantrurd | |
28 | 25 27 | bitrd | |
29 | 3anass | |
|
30 | 28 29 | bitr4di | |
31 | 2 6 30 | pm5.21nii | |