Metamath Proof Explorer


Theorem issrng

Description: The predicate "is a star ring". (Contributed by NM, 22-Sep-2011) (Revised by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses issrng.o O=opprR
issrng.i ˙=𝑟𝑓R
Assertion issrng R*-Ring˙RRingHomO˙=˙-1

Proof

Step Hyp Ref Expression
1 issrng.o O=opprR
2 issrng.i ˙=𝑟𝑓R
3 df-srng *-Ring=r|[˙𝑟𝑓r/i]˙irRingHomopprri=i-1
4 3 eleq2i R*-RingRr|[˙𝑟𝑓r/i]˙irRingHomopprri=i-1
5 rhmrcl1 ˙RRingHomORRing
6 5 adantr ˙RRingHomO˙=˙-1RRing
7 fvexd r=R𝑟𝑓rV
8 id i=𝑟𝑓ri=𝑟𝑓r
9 fveq2 r=R𝑟𝑓r=𝑟𝑓R
10 9 2 eqtr4di r=R𝑟𝑓r=˙
11 8 10 sylan9eqr r=Ri=𝑟𝑓ri=˙
12 simpl r=Ri=𝑟𝑓rr=R
13 12 fveq2d r=Ri=𝑟𝑓ropprr=opprR
14 13 1 eqtr4di r=Ri=𝑟𝑓ropprr=O
15 12 14 oveq12d r=Ri=𝑟𝑓rrRingHomopprr=RRingHomO
16 11 15 eleq12d r=Ri=𝑟𝑓rirRingHomopprr˙RRingHomO
17 11 cnveqd r=Ri=𝑟𝑓ri-1=˙-1
18 11 17 eqeq12d r=Ri=𝑟𝑓ri=i-1˙=˙-1
19 16 18 anbi12d r=Ri=𝑟𝑓rirRingHomopprri=i-1˙RRingHomO˙=˙-1
20 7 19 sbcied r=R[˙𝑟𝑓r/i]˙irRingHomopprri=i-1˙RRingHomO˙=˙-1
21 6 20 elab3 Rr|[˙𝑟𝑓r/i]˙irRingHomopprri=i-1˙RRingHomO˙=˙-1
22 4 21 bitri R*-Ring˙RRingHomO˙=˙-1