Metamath Proof Explorer


Theorem issubg

Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis issubg.b B=BaseG
Assertion issubg SSubGrpGGGrpSBG𝑠SGrp

Proof

Step Hyp Ref Expression
1 issubg.b B=BaseG
2 df-subg SubGrp=wGrps𝒫Basew|w𝑠sGrp
3 2 mptrcl SSubGrpGGGrp
4 simp1 GGrpSBG𝑠SGrpGGrp
5 fveq2 w=GBasew=BaseG
6 5 1 eqtr4di w=GBasew=B
7 6 pweqd w=G𝒫Basew=𝒫B
8 oveq1 w=Gw𝑠s=G𝑠s
9 8 eleq1d w=Gw𝑠sGrpG𝑠sGrp
10 7 9 rabeqbidv w=Gs𝒫Basew|w𝑠sGrp=s𝒫B|G𝑠sGrp
11 1 fvexi BV
12 11 pwex 𝒫BV
13 12 rabex s𝒫B|G𝑠sGrpV
14 10 2 13 fvmpt GGrpSubGrpG=s𝒫B|G𝑠sGrp
15 14 eleq2d GGrpSSubGrpGSs𝒫B|G𝑠sGrp
16 oveq2 s=SG𝑠s=G𝑠S
17 16 eleq1d s=SG𝑠sGrpG𝑠SGrp
18 17 elrab Ss𝒫B|G𝑠sGrpS𝒫BG𝑠SGrp
19 11 elpw2 S𝒫BSB
20 19 anbi1i S𝒫BG𝑠SGrpSBG𝑠SGrp
21 18 20 bitri Ss𝒫B|G𝑠sGrpSBG𝑠SGrp
22 15 21 bitrdi GGrpSSubGrpGSBG𝑠SGrp
23 ibar GGrpSBG𝑠SGrpGGrpSBG𝑠SGrp
24 22 23 bitrd GGrpSSubGrpGGGrpSBG𝑠SGrp
25 3anass GGrpSBG𝑠SGrpGGrpSBG𝑠SGrp
26 24 25 bitr4di GGrpSSubGrpGGGrpSBG𝑠SGrp
27 3 4 26 pm5.21nii SSubGrpGGGrpSBG𝑠SGrp