Description: A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | issubg3.i | |
|
Assertion | issubg3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubg3.i | |
|
2 | eqid | |
|
3 | 2 | subg0cl | |
4 | 3 | a1i | |
5 | 2 | subm0cl | |
6 | 5 | adantr | |
7 | 6 | a1i | |
8 | ne0i | |
|
9 | id | |
|
10 | 8 9 | 2thd | |
11 | 10 | adantl | |
12 | r19.26 | |
|
13 | 12 | a1i | |
14 | 11 13 | 3anbi23d | |
15 | anass | |
|
16 | df-3an | |
|
17 | 16 | anbi1i | |
18 | df-3an | |
|
19 | 15 17 18 | 3bitr4ri | |
20 | 14 19 | bitrdi | |
21 | eqid | |
|
22 | eqid | |
|
23 | 21 22 1 | issubg2 | |
24 | 23 | adantr | |
25 | grpmnd | |
|
26 | 21 2 22 | issubm | |
27 | 25 26 | syl | |
28 | 27 | anbi1d | |
29 | 28 | adantr | |
30 | 20 24 29 | 3bitr4d | |
31 | 30 | ex | |
32 | 4 7 31 | pm5.21ndd | |