Metamath Proof Explorer


Theorem issubg3

Description: A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypothesis issubg3.i I=invgG
Assertion issubg3 GGrpSSubGrpGSSubMndGxSIxS

Proof

Step Hyp Ref Expression
1 issubg3.i I=invgG
2 eqid 0G=0G
3 2 subg0cl SSubGrpG0GS
4 3 a1i GGrpSSubGrpG0GS
5 2 subm0cl SSubMndG0GS
6 5 adantr SSubMndGxSIxS0GS
7 6 a1i GGrpSSubMndGxSIxS0GS
8 ne0i 0GSS
9 id 0GS0GS
10 8 9 2thd 0GSS0GS
11 10 adantl GGrp0GSS0GS
12 r19.26 xSySx+GySIxSxSySx+GySxSIxS
13 12 a1i GGrp0GSxSySx+GySIxSxSySx+GySxSIxS
14 11 13 3anbi23d GGrp0GSSBaseGSxSySx+GySIxSSBaseG0GSxSySx+GySxSIxS
15 anass SBaseG0GSxSySx+GySxSIxSSBaseG0GSxSySx+GySxSIxS
16 df-3an SBaseG0GSxSySx+GySSBaseG0GSxSySx+GyS
17 16 anbi1i SBaseG0GSxSySx+GySxSIxSSBaseG0GSxSySx+GySxSIxS
18 df-3an SBaseG0GSxSySx+GySxSIxSSBaseG0GSxSySx+GySxSIxS
19 15 17 18 3bitr4ri SBaseG0GSxSySx+GySxSIxSSBaseG0GSxSySx+GySxSIxS
20 14 19 bitrdi GGrp0GSSBaseGSxSySx+GySIxSSBaseG0GSxSySx+GySxSIxS
21 eqid BaseG=BaseG
22 eqid +G=+G
23 21 22 1 issubg2 GGrpSSubGrpGSBaseGSxSySx+GySIxS
24 23 adantr GGrp0GSSSubGrpGSBaseGSxSySx+GySIxS
25 grpmnd GGrpGMnd
26 21 2 22 issubm GMndSSubMndGSBaseG0GSxSySx+GyS
27 25 26 syl GGrpSSubMndGSBaseG0GSxSySx+GyS
28 27 anbi1d GGrpSSubMndGxSIxSSBaseG0GSxSySx+GySxSIxS
29 28 adantr GGrp0GSSSubMndGxSIxSSBaseG0GSxSySx+GySxSIxS
30 20 24 29 3bitr4d GGrp0GSSSubGrpGSSubMndGxSIxS
31 30 ex GGrp0GSSSubGrpGSSubMndGxSIxS
32 4 7 31 pm5.21ndd GGrpSSubGrpGSSubMndGxSIxS