Metamath Proof Explorer


Theorem itg20

Description: The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg20 2×0=0

Proof

Step Hyp Ref Expression
1 i1f0 ×0dom1
2 reex V
3 2 a1i V
4 i1ff ×0dom1×0:
5 1 4 mp1i ×0:
6 leid xxx
7 6 adantl xxx
8 3 5 7 caofref ×0f×0
9 ax-resscn
10 9 a1i
11 5 ffnd ×0Fn
12 10 11 0pledm 0𝑝f×0×0f×0
13 8 12 mpbird 0𝑝f×0
14 13 mptru 0𝑝f×0
15 itg2itg1 ×0dom10𝑝f×02×0=1×0
16 1 14 15 mp2an 2×0=1×0
17 itg10 1×0=0
18 16 17 eqtri 2×0=0