Metamath Proof Explorer


Theorem itg2i1fseq3

Description: Special case of itg2i1fseq2 : if the integral of F is a real number, then the standard limit relation holds on the integrals of simple functions approaching F . (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itg2i1fseq.1 φ F MblFn
itg2i1fseq.2 φ F : 0 +∞
itg2i1fseq.3 φ P : dom 1
itg2i1fseq.4 φ n 0 𝑝 f P n P n f P n + 1
itg2i1fseq.5 φ x n P n x F x
itg2i1fseq.6 S = m 1 P m
itg2i1fseq3.7 φ 2 F
Assertion itg2i1fseq3 φ S 2 F

Proof

Step Hyp Ref Expression
1 itg2i1fseq.1 φ F MblFn
2 itg2i1fseq.2 φ F : 0 +∞
3 itg2i1fseq.3 φ P : dom 1
4 itg2i1fseq.4 φ n 0 𝑝 f P n P n f P n + 1
5 itg2i1fseq.5 φ x n P n x F x
6 itg2i1fseq.6 S = m 1 P m
7 itg2i1fseq3.7 φ 2 F
8 icossicc 0 +∞ 0 +∞
9 fss F : 0 +∞ 0 +∞ 0 +∞ F : 0 +∞
10 2 8 9 sylancl φ F : 0 +∞
11 10 adantr φ k F : 0 +∞
12 3 ffvelrnda φ k P k dom 1
13 1 2 3 4 5 itg2i1fseqle φ k P k f F
14 itg2ub F : 0 +∞ P k dom 1 P k f F 1 P k 2 F
15 11 12 13 14 syl3anc φ k 1 P k 2 F
16 1 2 3 4 5 6 7 15 itg2i1fseq2 φ S 2 F