Metamath Proof Explorer


Theorem itg2i1fseq3

Description: Special case of itg2i1fseq2 : if the integral of F is a real number, then the standard limit relation holds on the integrals of simple functions approaching F . (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itg2i1fseq.1 φFMblFn
itg2i1fseq.2 φF:0+∞
itg2i1fseq.3 φP:dom1
itg2i1fseq.4 φn0𝑝fPnPnfPn+1
itg2i1fseq.5 φxnPnxFx
itg2i1fseq.6 S=m1Pm
itg2i1fseq3.7 φ2F
Assertion itg2i1fseq3 φS2F

Proof

Step Hyp Ref Expression
1 itg2i1fseq.1 φFMblFn
2 itg2i1fseq.2 φF:0+∞
3 itg2i1fseq.3 φP:dom1
4 itg2i1fseq.4 φn0𝑝fPnPnfPn+1
5 itg2i1fseq.5 φxnPnxFx
6 itg2i1fseq.6 S=m1Pm
7 itg2i1fseq3.7 φ2F
8 icossicc 0+∞0+∞
9 fss F:0+∞0+∞0+∞F:0+∞
10 2 8 9 sylancl φF:0+∞
11 10 adantr φkF:0+∞
12 3 ffvelcdmda φkPkdom1
13 1 2 3 4 5 itg2i1fseqle φkPkfF
14 itg2ub F:0+∞Pkdom1PkfF1Pk2F
15 11 12 13 14 syl3anc φk1Pk2F
16 1 2 3 4 5 6 7 15 itg2i1fseq2 φS2F