Metamath Proof Explorer


Theorem itg2i1fseq2

Description: In an extension to the results of itg2i1fseq , if there is an upper bound on the integrals of the simple functions approaching F , then S.2 F is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itg2i1fseq.1 φ F MblFn
itg2i1fseq.2 φ F : 0 +∞
itg2i1fseq.3 φ P : dom 1
itg2i1fseq.4 φ n 0 𝑝 f P n P n f P n + 1
itg2i1fseq.5 φ x n P n x F x
itg2i1fseq.6 S = m 1 P m
itg2i1fseq2.7 φ M
itg2i1fseq2.8 φ k 1 P k M
Assertion itg2i1fseq2 φ S 2 F

Proof

Step Hyp Ref Expression
1 itg2i1fseq.1 φ F MblFn
2 itg2i1fseq.2 φ F : 0 +∞
3 itg2i1fseq.3 φ P : dom 1
4 itg2i1fseq.4 φ n 0 𝑝 f P n P n f P n + 1
5 itg2i1fseq.5 φ x n P n x F x
6 itg2i1fseq.6 S = m 1 P m
7 itg2i1fseq2.7 φ M
8 itg2i1fseq2.8 φ k 1 P k M
9 nnuz = 1
10 1zzd φ 1
11 3 ffvelrnda φ m P m dom 1
12 itg1cl P m dom 1 1 P m
13 11 12 syl φ m 1 P m
14 13 6 fmptd φ S :
15 3 ffvelrnda φ k P k dom 1
16 peano2nn k k + 1
17 ffvelrn P : dom 1 k + 1 P k + 1 dom 1
18 3 16 17 syl2an φ k P k + 1 dom 1
19 simpr 0 𝑝 f P n P n f P n + 1 P n f P n + 1
20 19 ralimi n 0 𝑝 f P n P n f P n + 1 n P n f P n + 1
21 4 20 syl φ n P n f P n + 1
22 fveq2 n = k P n = P k
23 fvoveq1 n = k P n + 1 = P k + 1
24 22 23 breq12d n = k P n f P n + 1 P k f P k + 1
25 24 rspccva n P n f P n + 1 k P k f P k + 1
26 21 25 sylan φ k P k f P k + 1
27 itg1le P k dom 1 P k + 1 dom 1 P k f P k + 1 1 P k 1 P k + 1
28 15 18 26 27 syl3anc φ k 1 P k 1 P k + 1
29 2fveq3 m = k 1 P m = 1 P k
30 fvex 1 P k V
31 29 6 30 fvmpt k S k = 1 P k
32 31 adantl φ k S k = 1 P k
33 2fveq3 m = k + 1 1 P m = 1 P k + 1
34 fvex 1 P k + 1 V
35 33 6 34 fvmpt k + 1 S k + 1 = 1 P k + 1
36 16 35 syl k S k + 1 = 1 P k + 1
37 36 adantl φ k S k + 1 = 1 P k + 1
38 28 32 37 3brtr4d φ k S k S k + 1
39 32 8 eqbrtrd φ k S k M
40 39 ralrimiva φ k S k M
41 brralrspcev M k S k M z k S k z
42 7 40 41 syl2anc φ z k S k z
43 9 10 14 38 42 climsup φ S sup ran S <
44 1 2 3 4 5 6 itg2i1fseq φ 2 F = sup ran S * <
45 14 frnd φ ran S
46 6 13 dmmptd φ dom S =
47 1nn 1
48 ne0i 1
49 47 48 mp1i φ
50 46 49 eqnetrd φ dom S
51 dm0rn0 dom S = ran S =
52 51 necon3bii dom S ran S
53 50 52 sylib φ ran S
54 ffn S : S Fn
55 breq1 y = S k y z S k z
56 55 ralrn S Fn y ran S y z k S k z
57 14 54 56 3syl φ y ran S y z k S k z
58 57 rexbidv φ z y ran S y z z k S k z
59 42 58 mpbird φ z y ran S y z
60 supxrre ran S ran S z y ran S y z sup ran S * < = sup ran S <
61 45 53 59 60 syl3anc φ sup ran S * < = sup ran S <
62 44 61 eqtrd φ 2 F = sup ran S <
63 43 62 breqtrrd φ S 2 F