Metamath Proof Explorer


Theorem itg2i1fseq

Description: Subject to the conditions coming from mbfi1fseq , the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itg2i1fseq.1 φFMblFn
itg2i1fseq.2 φF:0+∞
itg2i1fseq.3 φP:dom1
itg2i1fseq.4 φn0𝑝fPnPnfPn+1
itg2i1fseq.5 φxnPnxFx
itg2i1fseq.6 S=m1Pm
Assertion itg2i1fseq φ2F=supranS*<

Proof

Step Hyp Ref Expression
1 itg2i1fseq.1 φFMblFn
2 itg2i1fseq.2 φF:0+∞
3 itg2i1fseq.3 φP:dom1
4 itg2i1fseq.4 φn0𝑝fPnPnfPn+1
5 itg2i1fseq.5 φxnPnxFx
6 itg2i1fseq.6 S=m1Pm
7 fveq2 n=mPn=Pm
8 7 fveq1d n=mPnx=Pmx
9 8 cbvmptv nPnx=mPmx
10 fveq2 x=yPmx=Pmy
11 10 mpteq2dv x=ymPmx=mPmy
12 9 11 eqtrid x=ynPnx=mPmy
13 12 rneqd x=yrannPnx=ranmPmy
14 13 supeq1d x=ysuprannPnx<=supranmPmy<
15 14 cbvmptv xsuprannPnx<=ysupranmPmy<
16 3 ffvelcdmda φmPmdom1
17 i1fmbf Pmdom1PmMblFn
18 16 17 syl φmPmMblFn
19 i1ff Pmdom1Pm:
20 16 19 syl φmPm:
21 7 breq2d n=m0𝑝fPn0𝑝fPm
22 fvoveq1 n=mPn+1=Pm+1
23 7 22 breq12d n=mPnfPn+1PmfPm+1
24 21 23 anbi12d n=m0𝑝fPnPnfPn+10𝑝fPmPmfPm+1
25 24 rspccva n0𝑝fPnPnfPn+1m0𝑝fPmPmfPm+1
26 4 25 sylan φm0𝑝fPmPmfPm+1
27 26 simpld φm0𝑝fPm
28 0plef Pm:0+∞Pm:0𝑝fPm
29 20 27 28 sylanbrc φmPm:0+∞
30 26 simprd φmPmfPm+1
31 rge0ssre 0+∞
32 2 ffvelcdmda φyFy0+∞
33 31 32 sselid φyFy
34 1 2 3 4 5 itg2i1fseqle φmPmfF
35 20 ffnd φmPmFn
36 2 ffnd φFFn
37 36 adantr φmFFn
38 reex V
39 38 a1i φmV
40 inidm =
41 eqidd φmyPmy=Pmy
42 eqidd φmyFy=Fy
43 35 37 39 39 40 41 42 ofrfval φmPmfFyPmyFy
44 34 43 mpbid φmyPmyFy
45 44 r19.21bi φmyPmyFy
46 45 an32s φymPmyFy
47 46 ralrimiva φymPmyFy
48 brralrspcev FymPmyFyzmPmyz
49 33 47 48 syl2anc φyzmPmyz
50 7 fveq2d n=m2Pn=2Pm
51 50 cbvmptv n2Pn=m2Pm
52 51 rneqi rann2Pn=ranm2Pm
53 52 supeq1i suprann2Pn*<=supranm2Pm*<
54 15 18 29 30 49 53 itg2mono φ2xsuprannPnx<=suprann2Pn*<
55 2 feqmptd φF=yFy
56 7 fveq1d n=mPny=Pmy
57 56 cbvmptv nPny=mPmy
58 57 rneqi rannPny=ranmPmy
59 58 supeq1i suprannPny<=supranmPmy<
60 nnuz =1
61 1zzd φy1
62 20 ffvelcdmda φmyPmy
63 62 an32s φymPmy
64 63 57 fmptd φynPny:
65 peano2nn mm+1
66 ffvelcdm P:dom1m+1Pm+1dom1
67 3 65 66 syl2an φmPm+1dom1
68 i1ff Pm+1dom1Pm+1:
69 67 68 syl φmPm+1:
70 69 ffnd φmPm+1Fn
71 eqidd φmyPm+1y=Pm+1y
72 35 70 39 39 40 41 71 ofrfval φmPmfPm+1yPmyPm+1y
73 30 72 mpbid φmyPmyPm+1y
74 73 r19.21bi φmyPmyPm+1y
75 74 an32s φymPmyPm+1y
76 eqid nPny=nPny
77 fvex PmyV
78 56 76 77 fvmpt mnPnym=Pmy
79 78 adantl φymnPnym=Pmy
80 fveq2 n=m+1Pn=Pm+1
81 80 fveq1d n=m+1Pny=Pm+1y
82 fvex Pm+1yV
83 81 76 82 fvmpt m+1nPnym+1=Pm+1y
84 65 83 syl mnPnym+1=Pm+1y
85 84 adantl φymnPnym+1=Pm+1y
86 75 79 85 3brtr4d φymnPnymnPnym+1
87 78 breq1d mnPnymzPmyz
88 87 ralbiia mnPnymzmPmyz
89 88 rexbii zmnPnymzzmPmyz
90 49 89 sylibr φyzmnPnymz
91 60 61 64 86 90 climsup φynPnysuprannPny<
92 fveq2 x=yPnx=Pny
93 92 mpteq2dv x=ynPnx=nPny
94 fveq2 x=yFx=Fy
95 93 94 breq12d x=ynPnxFxnPnyFy
96 95 rspccva xnPnxFxynPnyFy
97 5 96 sylan φynPnyFy
98 climuni nPnysuprannPny<nPnyFysuprannPny<=Fy
99 91 97 98 syl2anc φysuprannPny<=Fy
100 59 99 eqtr3id φysupranmPmy<=Fy
101 100 mpteq2dva φysupranmPmy<=yFy
102 55 101 eqtr4d φF=ysupranmPmy<
103 102 15 eqtr4di φF=xsuprannPnx<
104 103 fveq2d φ2F=2xsuprannPnx<
105 itg2itg1 Pmdom10𝑝fPm2Pm=1Pm
106 16 27 105 syl2anc φm2Pm=1Pm
107 106 mpteq2dva φm2Pm=m1Pm
108 6 107 eqtr4id φS=m2Pm
109 108 51 eqtr4di φS=n2Pn
110 109 rneqd φranS=rann2Pn
111 110 supeq1d φsupranS*<=suprann2Pn*<
112 54 104 111 3eqtr4d φ2F=supranS*<