Metamath Proof Explorer


Theorem itgeq12dv

Description: Equality theorem for an integral. (Contributed by Thierry Arnoux, 14-Feb-2017)

Ref Expression
Hypotheses itgeq12dv.2 φA=B
itgeq12dv.1 φxAC=D
Assertion itgeq12dv φACdx=BDdx

Proof

Step Hyp Ref Expression
1 itgeq12dv.2 φA=B
2 itgeq12dv.1 φxAC=D
3 2 fvoveq1d φxACik=Dik
4 3 breq2d φxA0Cik0Dik
5 4 pm5.32da φxA0CikxA0Dik
6 1 eleq2d φxAxB
7 6 anbi1d φxA0DikxB0Dik
8 5 7 bitrd φxA0CikxB0Dik
9 3 adantrr φxA0CikCik=Dik
10 eqidd φ¬xA0Cik0=0
11 8 9 10 ifbieq12d2 φifxA0CikCik0=ifxB0DikDik0
12 11 mpteq2dv φxifxA0CikCik0=xifxB0DikDik0
13 12 fveq2d φ2xifxA0CikCik0=2xifxB0DikDik0
14 13 oveq2d φik2xifxA0CikCik0=ik2xifxB0DikDik0
15 14 sumeq2sdv φk=03ik2xifxA0CikCik0=k=03ik2xifxB0DikDik0
16 eqid Cik=Cik
17 16 dfitg ACdx=k=03ik2xifxA0CikCik0
18 eqid Dik=Dik
19 18 dfitg BDdx=k=03ik2xifxB0DikDik0
20 15 17 19 3eqtr4g φACdx=BDdx