Description: Equality theorem for an integral. (Contributed by Thierry Arnoux, 14-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itgeq12dv.2 | |
|
itgeq12dv.1 | |
||
Assertion | itgeq12dv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgeq12dv.2 | |
|
2 | itgeq12dv.1 | |
|
3 | 2 | fvoveq1d | |
4 | 3 | breq2d | |
5 | 4 | pm5.32da | |
6 | 1 | eleq2d | |
7 | 6 | anbi1d | |
8 | 5 7 | bitrd | |
9 | 3 | adantrr | |
10 | eqidd | |
|
11 | 8 9 10 | ifbieq12d2 | |
12 | 11 | mpteq2dv | |
13 | 12 | fveq2d | |
14 | 13 | oveq2d | |
15 | 14 | sumeq2sdv | |
16 | eqid | |
|
17 | 16 | dfitg | |
18 | eqid | |
|
19 | 18 | dfitg | |
20 | 15 17 19 | 3eqtr4g | |