Metamath Proof Explorer


Theorem itgsub

Description: Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgadd.1 φxABV
itgadd.2 φxAB𝐿1
itgadd.3 φxACV
itgadd.4 φxAC𝐿1
Assertion itgsub φABCdx=ABdxACdx

Proof

Step Hyp Ref Expression
1 itgadd.1 φxABV
2 itgadd.2 φxAB𝐿1
3 itgadd.3 φxACV
4 itgadd.4 φxAC𝐿1
5 iblmbf xAB𝐿1xABMblFn
6 2 5 syl φxABMblFn
7 6 1 mbfmptcl φxAB
8 iblmbf xAC𝐿1xACMblFn
9 4 8 syl φxACMblFn
10 9 3 mbfmptcl φxAC
11 10 negcld φxAC
12 3 4 iblneg φxAC𝐿1
13 7 2 11 12 itgadd φAB+Cdx=ABdx+ACdx
14 3 4 itgneg φACdx=ACdx
15 14 oveq2d φABdx+ACdx=ABdx+ACdx
16 13 15 eqtr4d φAB+Cdx=ABdx+ACdx
17 7 10 negsubd φxAB+C=BC
18 17 itgeq2dv φAB+Cdx=ABCdx
19 1 2 itgcl φABdx
20 3 4 itgcl φACdx
21 19 20 negsubd φABdx+ACdx=ABdxACdx
22 16 18 21 3eqtr3d φABCdx=ABdxACdx