Step |
Hyp |
Ref |
Expression |
1 |
|
iundjiunlem.z |
|
2 |
|
iundjiunlem.f |
|
3 |
|
iundjiunlem.j |
|
4 |
|
iundjiunlem.k |
|
5 |
|
iundjiunlem.lt |
|
6 |
|
incom |
|
7 |
|
simpl |
|
8 |
|
simpr |
|
9 |
|
fveq2 |
|
10 |
|
oveq2 |
|
11 |
10
|
iuneq1d |
|
12 |
9 11
|
difeq12d |
|
13 |
|
fvex |
|
14 |
13
|
difexi |
|
15 |
12 2 14
|
fvmpt |
|
16 |
4 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
8 17
|
eleqtrd |
|
19 |
18
|
eldifbd |
|
20 |
3 1
|
eleqtrdi |
|
21 |
1 4
|
eluzelz2d |
|
22 |
20 21 5
|
elfzod |
|
23 |
|
fveq2 |
|
24 |
23
|
ssiun2s |
|
25 |
22 24
|
syl |
|
26 |
25
|
ssneld |
|
27 |
7 19 26
|
sylc |
|
28 |
|
eldifi |
|
29 |
27 28
|
nsyl |
|
30 |
|
fveq2 |
|
31 |
|
oveq2 |
|
32 |
31
|
iuneq1d |
|
33 |
30 32
|
difeq12d |
|
34 |
|
fvex |
|
35 |
34
|
difexi |
|
36 |
33 2 35
|
fvmpt |
|
37 |
3 36
|
syl |
|
38 |
37
|
adantr |
|
39 |
29 38
|
neleqtrrd |
|
40 |
39
|
ralrimiva |
|
41 |
|
disj |
|
42 |
40 41
|
sylibr |
|
43 |
6 42
|
eqtrid |
|