Metamath Proof Explorer


Theorem iundjiunlem

Description: The sets in the sequence F are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses iundjiunlem.z Z=N
iundjiunlem.f F=nZEniN..^nEi
iundjiunlem.j φJZ
iundjiunlem.k φKZ
iundjiunlem.lt φJ<K
Assertion iundjiunlem φFJFK=

Proof

Step Hyp Ref Expression
1 iundjiunlem.z Z=N
2 iundjiunlem.f F=nZEniN..^nEi
3 iundjiunlem.j φJZ
4 iundjiunlem.k φKZ
5 iundjiunlem.lt φJ<K
6 incom FJFK=FKFJ
7 simpl φxFKφ
8 simpr φxFKxFK
9 fveq2 n=KEn=EK
10 oveq2 n=KN..^n=N..^K
11 10 iuneq1d n=KiN..^nEi=iN..^KEi
12 9 11 difeq12d n=KEniN..^nEi=EKiN..^KEi
13 fvex EKV
14 13 difexi EKiN..^KEiV
15 12 2 14 fvmpt KZFK=EKiN..^KEi
16 4 15 syl φFK=EKiN..^KEi
17 16 adantr φxFKFK=EKiN..^KEi
18 8 17 eleqtrd φxFKxEKiN..^KEi
19 18 eldifbd φxFK¬xiN..^KEi
20 3 1 eleqtrdi φJN
21 1 4 eluzelz2d φK
22 20 21 5 elfzod φJN..^K
23 fveq2 i=JEi=EJ
24 23 ssiun2s JN..^KEJiN..^KEi
25 22 24 syl φEJiN..^KEi
26 25 ssneld φ¬xiN..^KEi¬xEJ
27 7 19 26 sylc φxFK¬xEJ
28 eldifi xEJiN..^JEixEJ
29 27 28 nsyl φxFK¬xEJiN..^JEi
30 fveq2 n=JEn=EJ
31 oveq2 n=JN..^n=N..^J
32 31 iuneq1d n=JiN..^nEi=iN..^JEi
33 30 32 difeq12d n=JEniN..^nEi=EJiN..^JEi
34 fvex EJV
35 34 difexi EJiN..^JEiV
36 33 2 35 fvmpt JZFJ=EJiN..^JEi
37 3 36 syl φFJ=EJiN..^JEi
38 37 adantr φxFKFJ=EJiN..^JEi
39 29 38 neleqtrrd φxFK¬xFJ
40 39 ralrimiva φxFK¬xFJ
41 disj FKFJ=xFK¬xFJ
42 40 41 sylibr φFKFJ=
43 6 42 eqtrid φFJFK=