Metamath Proof Explorer


Theorem iundjiunlem

Description: The sets in the sequence F are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses iundjiunlem.z Z = N
iundjiunlem.f F = n Z E n i N ..^ n E i
iundjiunlem.j φ J Z
iundjiunlem.k φ K Z
iundjiunlem.lt φ J < K
Assertion iundjiunlem φ F J F K =

Proof

Step Hyp Ref Expression
1 iundjiunlem.z Z = N
2 iundjiunlem.f F = n Z E n i N ..^ n E i
3 iundjiunlem.j φ J Z
4 iundjiunlem.k φ K Z
5 iundjiunlem.lt φ J < K
6 incom F J F K = F K F J
7 simpl φ x F K φ
8 simpr φ x F K x F K
9 fveq2 n = K E n = E K
10 oveq2 n = K N ..^ n = N ..^ K
11 10 iuneq1d n = K i N ..^ n E i = i N ..^ K E i
12 9 11 difeq12d n = K E n i N ..^ n E i = E K i N ..^ K E i
13 fvex E K V
14 13 difexi E K i N ..^ K E i V
15 12 2 14 fvmpt K Z F K = E K i N ..^ K E i
16 4 15 syl φ F K = E K i N ..^ K E i
17 16 adantr φ x F K F K = E K i N ..^ K E i
18 8 17 eleqtrd φ x F K x E K i N ..^ K E i
19 18 eldifbd φ x F K ¬ x i N ..^ K E i
20 3 1 eleqtrdi φ J N
21 1 4 eluzelz2d φ K
22 20 21 5 elfzod φ J N ..^ K
23 fveq2 i = J E i = E J
24 23 ssiun2s J N ..^ K E J i N ..^ K E i
25 22 24 syl φ E J i N ..^ K E i
26 25 ssneld φ ¬ x i N ..^ K E i ¬ x E J
27 7 19 26 sylc φ x F K ¬ x E J
28 eldifi x E J i N ..^ J E i x E J
29 27 28 nsyl φ x F K ¬ x E J i N ..^ J E i
30 fveq2 n = J E n = E J
31 oveq2 n = J N ..^ n = N ..^ J
32 31 iuneq1d n = J i N ..^ n E i = i N ..^ J E i
33 30 32 difeq12d n = J E n i N ..^ n E i = E J i N ..^ J E i
34 fvex E J V
35 34 difexi E J i N ..^ J E i V
36 33 2 35 fvmpt J Z F J = E J i N ..^ J E i
37 3 36 syl φ F J = E J i N ..^ J E i
38 37 adantr φ x F K F J = E J i N ..^ J E i
39 29 38 neleqtrrd φ x F K ¬ x F J
40 39 ralrimiva φ x F K ¬ x F J
41 disj F K F J = x F K ¬ x F J
42 40 41 sylibr φ F K F J =
43 6 42 eqtrid φ F J F K =