| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iundjiunlem.z |  | 
						
							| 2 |  | iundjiunlem.f |  | 
						
							| 3 |  | iundjiunlem.j |  | 
						
							| 4 |  | iundjiunlem.k |  | 
						
							| 5 |  | iundjiunlem.lt |  | 
						
							| 6 |  | incom |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 |  | simpr |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 |  | oveq2 |  | 
						
							| 11 | 10 | iuneq1d |  | 
						
							| 12 | 9 11 | difeq12d |  | 
						
							| 13 |  | fvex |  | 
						
							| 14 | 13 | difexi |  | 
						
							| 15 | 12 2 14 | fvmpt |  | 
						
							| 16 | 4 15 | syl |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 8 17 | eleqtrd |  | 
						
							| 19 | 18 | eldifbd |  | 
						
							| 20 | 3 1 | eleqtrdi |  | 
						
							| 21 | 1 4 | eluzelz2d |  | 
						
							| 22 | 20 21 5 | elfzod |  | 
						
							| 23 |  | fveq2 |  | 
						
							| 24 | 23 | ssiun2s |  | 
						
							| 25 | 22 24 | syl |  | 
						
							| 26 | 25 | ssneld |  | 
						
							| 27 | 7 19 26 | sylc |  | 
						
							| 28 |  | eldifi |  | 
						
							| 29 | 27 28 | nsyl |  | 
						
							| 30 |  | fveq2 |  | 
						
							| 31 |  | oveq2 |  | 
						
							| 32 | 31 | iuneq1d |  | 
						
							| 33 | 30 32 | difeq12d |  | 
						
							| 34 |  | fvex |  | 
						
							| 35 | 34 | difexi |  | 
						
							| 36 | 33 2 35 | fvmpt |  | 
						
							| 37 | 3 36 | syl |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 29 38 | neleqtrrd |  | 
						
							| 40 | 39 | ralrimiva |  | 
						
							| 41 |  | disj |  | 
						
							| 42 | 40 41 | sylibr |  | 
						
							| 43 | 6 42 | eqtrid |  |