Metamath Proof Explorer


Theorem iunopeqop

Description: Implication of an ordered pair being equal to an indexed union of singletons of ordered pairs. (Contributed by AV, 20-Sep-2020) (Avoid depending on this detail.)

Ref Expression
Hypotheses iunopeqop.b BV
iunopeqop.c CV
iunopeqop.d DV
Assertion iunopeqop AxAxB=CDzA=z

Proof

Step Hyp Ref Expression
1 iunopeqop.b BV
2 iunopeqop.c CV
3 iunopeqop.d DV
4 n0snor2el AxAyAxyzA=z
5 nfiu1 _xxAxB
6 5 nfeq1 xxAxB=CD
7 nfv xzA=z
8 6 7 nfim xxAxB=CDzA=z
9 ssiun2 xAxBxAxB
10 nfcv _xy
11 nfcsb1v _xy/xB
12 10 11 nfop _xyy/xB
13 12 nfsn _xyy/xB
14 13 5 nfss xyy/xBxAxB
15 id x=yx=y
16 csbeq1a x=yB=y/xB
17 15 16 opeq12d x=yxB=yy/xB
18 17 sneqd x=yxB=yy/xB
19 18 sseq1d x=yxBxAxByy/xBxAxB
20 10 14 19 9 vtoclgaf yAyy/xBxAxB
21 9 20 anim12i xAyAxBxAxByy/xBxAxB
22 unss xBxAxByy/xBxAxBxByy/xBxAxB
23 sseq2 xAxB=CDxByy/xBxAxBxByy/xBCD
24 df-pr xByy/xB=xByy/xB
25 24 eqcomi xByy/xB=xByy/xB
26 25 sseq1i xByy/xBCDxByy/xBCD
27 vex xV
28 vex yV
29 1 csbex y/xBV
30 27 1 28 29 2 3 propssopi xByy/xBCDx=y
31 eqneqall x=yxyxAyAzA=z
32 30 31 syl xByy/xBCDxyxAyAzA=z
33 26 32 sylbi xByy/xBCDxyxAyAzA=z
34 23 33 syl6bi xAxB=CDxByy/xBxAxBxyxAyAzA=z
35 34 com14 xAyAxByy/xBxAxBxyxAxB=CDzA=z
36 22 35 biimtrid xAyAxBxAxByy/xBxAxBxyxAxB=CDzA=z
37 21 36 mpd xAyAxyxAxB=CDzA=z
38 37 rexlimdva xAyAxyxAxB=CDzA=z
39 8 38 rexlimi xAyAxyxAxB=CDzA=z
40 ax-1 zA=zxAxB=CDzA=z
41 39 40 jaoi xAyAxyzA=zxAxB=CDzA=z
42 4 41 syl AxAxB=CDzA=z