Description: Implication of an ordered pair being equal to an indexed union of singletons of ordered pairs. (Contributed by AV, 20-Sep-2020) (Avoid depending on this detail.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iunopeqop.b | |
|
iunopeqop.c | |
||
iunopeqop.d | |
||
Assertion | iunopeqop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunopeqop.b | |
|
2 | iunopeqop.c | |
|
3 | iunopeqop.d | |
|
4 | n0snor2el | |
|
5 | nfiu1 | |
|
6 | 5 | nfeq1 | |
7 | nfv | |
|
8 | 6 7 | nfim | |
9 | ssiun2 | |
|
10 | nfcv | |
|
11 | nfcsb1v | |
|
12 | 10 11 | nfop | |
13 | 12 | nfsn | |
14 | 13 5 | nfss | |
15 | id | |
|
16 | csbeq1a | |
|
17 | 15 16 | opeq12d | |
18 | 17 | sneqd | |
19 | 18 | sseq1d | |
20 | 10 14 19 9 | vtoclgaf | |
21 | 9 20 | anim12i | |
22 | unss | |
|
23 | sseq2 | |
|
24 | df-pr | |
|
25 | 24 | eqcomi | |
26 | 25 | sseq1i | |
27 | vex | |
|
28 | vex | |
|
29 | 1 | csbex | |
30 | 27 1 28 29 2 3 | propssopi | |
31 | eqneqall | |
|
32 | 30 31 | syl | |
33 | 26 32 | sylbi | |
34 | 23 33 | syl6bi | |
35 | 34 | com14 | |
36 | 22 35 | biimtrid | |
37 | 21 36 | mpd | |
38 | 37 | rexlimdva | |
39 | 8 38 | rexlimi | |
40 | ax-1 | |
|
41 | 39 40 | jaoi | |
42 | 4 41 | syl | |