Metamath Proof Explorer


Theorem jm2.19lem2

Description: Lemma for jm2.19 . (Contributed by Stefan O'Rear, 23-Sep-2014)

Ref Expression
Assertion jm2.19lem2 A2MNAYrmMAYrmNAYrmMAYrmN+M

Proof

Step Hyp Ref Expression
1 frmy Yrm:2×
2 1 fovcl A2MAYrmM
3 2 3adant3 A2MNAYrmM
4 1 fovcl A2NAYrmN
5 4 3adant2 A2MNAYrmN
6 frmx Xrm:2×0
7 6 fovcl A2MAXrmM0
8 7 3adant3 A2MNAXrmM0
9 8 nn0zd A2MNAXrmM
10 3 9 gcdcomd A2MNAYrmMgcdAXrmM=AXrmMgcdAYrmM
11 jm2.19lem1 A2MAXrmMgcdAYrmM=1
12 11 3adant3 A2MNAXrmMgcdAYrmM=1
13 10 12 eqtrd A2MNAYrmMgcdAXrmM=1
14 coprmdvdsb AYrmMAYrmNAXrmMAYrmMgcdAXrmM=1AYrmMAYrmNAYrmMAXrmMAYrmN
15 3 5 9 13 14 syl112anc A2MNAYrmMAYrmNAYrmMAXrmMAYrmN
16 8 nn0cnd A2MNAXrmM
17 5 zcnd A2MNAYrmN
18 16 17 mulcomd A2MNAXrmMAYrmN=AYrmNAXrmM
19 18 breq2d A2MNAYrmMAXrmMAYrmNAYrmMAYrmNAXrmM
20 15 19 bitrd A2MNAYrmMAYrmNAYrmMAYrmNAXrmM
21 5 9 zmulcld A2MNAYrmNAXrmM
22 6 fovcl A2NAXrmN0
23 22 3adant2 A2MNAXrmN0
24 23 nn0zd A2MNAXrmN
25 24 3 zmulcld A2MNAXrmNAYrmM
26 dvdsmul2 AXrmNAYrmMAYrmMAXrmNAYrmM
27 24 3 26 syl2anc A2MNAYrmMAXrmNAYrmM
28 dvdsadd2b AYrmMAYrmNAXrmMAXrmNAYrmMAYrmMAXrmNAYrmMAYrmMAYrmNAXrmMAYrmMAXrmNAYrmM+AYrmNAXrmM
29 3 21 25 27 28 syl112anc A2MNAYrmMAYrmNAXrmMAYrmMAXrmNAYrmM+AYrmNAXrmM
30 rmyadd A2NMAYrmN+M=AYrmNAXrmM+AXrmNAYrmM
31 30 3com23 A2MNAYrmN+M=AYrmNAXrmM+AXrmNAYrmM
32 17 16 mulcld A2MNAYrmNAXrmM
33 23 nn0cnd A2MNAXrmN
34 3 zcnd A2MNAYrmM
35 33 34 mulcld A2MNAXrmNAYrmM
36 32 35 addcomd A2MNAYrmNAXrmM+AXrmNAYrmM=AXrmNAYrmM+AYrmNAXrmM
37 31 36 eqtr2d A2MNAXrmNAYrmM+AYrmNAXrmM=AYrmN+M
38 37 breq2d A2MNAYrmMAXrmNAYrmM+AYrmNAXrmMAYrmMAYrmN+M
39 20 29 38 3bitrd A2MNAYrmMAYrmNAYrmMAYrmN+M