Description: Lemma for jm2.19 . (Contributed by Stefan O'Rear, 23-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | jm2.19lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frmy | |
|
2 | 1 | fovcl | |
3 | 2 | 3adant3 | |
4 | 1 | fovcl | |
5 | 4 | 3adant2 | |
6 | frmx | |
|
7 | 6 | fovcl | |
8 | 7 | 3adant3 | |
9 | 8 | nn0zd | |
10 | 3 9 | gcdcomd | |
11 | jm2.19lem1 | |
|
12 | 11 | 3adant3 | |
13 | 10 12 | eqtrd | |
14 | coprmdvdsb | |
|
15 | 3 5 9 13 14 | syl112anc | |
16 | 8 | nn0cnd | |
17 | 5 | zcnd | |
18 | 16 17 | mulcomd | |
19 | 18 | breq2d | |
20 | 15 19 | bitrd | |
21 | 5 9 | zmulcld | |
22 | 6 | fovcl | |
23 | 22 | 3adant2 | |
24 | 23 | nn0zd | |
25 | 24 3 | zmulcld | |
26 | dvdsmul2 | |
|
27 | 24 3 26 | syl2anc | |
28 | dvdsadd2b | |
|
29 | 3 21 25 27 28 | syl112anc | |
30 | rmyadd | |
|
31 | 30 | 3com23 | |
32 | 17 16 | mulcld | |
33 | 23 | nn0cnd | |
34 | 3 | zcnd | |
35 | 33 34 | mulcld | |
36 | 32 35 | addcomd | |
37 | 31 36 | eqtr2d | |
38 | 37 | breq2d | |
39 | 20 29 38 | 3bitrd | |