Description: The Knaster-Tarski theorem says that every monotone function over a complete lattice has a (least) fixpoint. Here we specialize this theorem to the case when the lattice is the powerset lattice ~P A . (Contributed by Mario Carneiro, 11-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | knatar.1 | |
|
Assertion | knatar | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knatar.1 | |
|
2 | pwidg | |
|
3 | 2 | 3ad2ant1 | |
4 | simp2 | |
|
5 | fveq2 | |
|
6 | id | |
|
7 | 5 6 | sseq12d | |
8 | 7 | intminss | |
9 | 3 4 8 | syl2anc | |
10 | 1 9 | eqsstrid | |
11 | fveq2 | |
|
12 | 11 | sseq1d | |
13 | pweq | |
|
14 | fveq2 | |
|
15 | 14 | sseq2d | |
16 | 13 15 | raleqbidv | |
17 | simpl3 | |
|
18 | simprl | |
|
19 | 16 17 18 | rspcdva | |
20 | fveq2 | |
|
21 | id | |
|
22 | 20 21 | sseq12d | |
23 | 22 | intminss | |
24 | 23 | adantl | |
25 | 1 24 | eqsstrid | |
26 | vex | |
|
27 | 26 | elpw2 | |
28 | 25 27 | sylibr | |
29 | 12 19 28 | rspcdva | |
30 | simprr | |
|
31 | 29 30 | sstrd | |
32 | 31 | expr | |
33 | 32 | ralrimiva | |
34 | ssintrab | |
|
35 | 33 34 | sylibr | |
36 | 22 | cbvrabv | |
37 | 36 | inteqi | |
38 | 1 37 | eqtri | |
39 | 35 38 | sseqtrrdi | |
40 | 11 | sseq1d | |
41 | pweq | |
|
42 | fveq2 | |
|
43 | 42 | sseq2d | |
44 | 41 43 | raleqbidv | |
45 | simp3 | |
|
46 | 44 45 3 | rspcdva | |
47 | 3 10 | sselpwd | |
48 | 40 46 47 | rspcdva | |
49 | 48 4 | sstrd | |
50 | fvex | |
|
51 | 50 | elpw | |
52 | 49 51 | sylibr | |
53 | fveq2 | |
|
54 | 53 | sseq1d | |
55 | pweq | |
|
56 | fveq2 | |
|
57 | 56 | sseq2d | |
58 | 55 57 | raleqbidv | |
59 | 58 45 47 | rspcdva | |
60 | 50 | elpw | |
61 | 39 60 | sylibr | |
62 | 54 59 61 | rspcdva | |
63 | fveq2 | |
|
64 | id | |
|
65 | 63 64 | sseq12d | |
66 | 65 | intminss | |
67 | 52 62 66 | syl2anc | |
68 | 38 67 | eqsstrid | |
69 | 39 68 | eqssd | |
70 | 10 69 | jca | |