Metamath Proof Explorer


Theorem knatar

Description: The Knaster-Tarski theorem says that every monotone function over a complete lattice has a (least) fixpoint. Here we specialize this theorem to the case when the lattice is the powerset lattice ~P A . (Contributed by Mario Carneiro, 11-Jun-2015)

Ref Expression
Hypothesis knatar.1 X=z𝒫A|Fzz
Assertion knatar AVFAAx𝒫Ay𝒫xFyFxXAFX=X

Proof

Step Hyp Ref Expression
1 knatar.1 X=z𝒫A|Fzz
2 pwidg AVA𝒫A
3 2 3ad2ant1 AVFAAx𝒫Ay𝒫xFyFxA𝒫A
4 simp2 AVFAAx𝒫Ay𝒫xFyFxFAA
5 fveq2 z=AFz=FA
6 id z=Az=A
7 5 6 sseq12d z=AFzzFAA
8 7 intminss A𝒫AFAAz𝒫A|FzzA
9 3 4 8 syl2anc AVFAAx𝒫Ay𝒫xFyFxz𝒫A|FzzA
10 1 9 eqsstrid AVFAAx𝒫Ay𝒫xFyFxXA
11 fveq2 y=XFy=FX
12 11 sseq1d y=XFyFwFXFw
13 pweq x=w𝒫x=𝒫w
14 fveq2 x=wFx=Fw
15 14 sseq2d x=wFyFxFyFw
16 13 15 raleqbidv x=wy𝒫xFyFxy𝒫wFyFw
17 simpl3 AVFAAx𝒫Ay𝒫xFyFxw𝒫AFwwx𝒫Ay𝒫xFyFx
18 simprl AVFAAx𝒫Ay𝒫xFyFxw𝒫AFwww𝒫A
19 16 17 18 rspcdva AVFAAx𝒫Ay𝒫xFyFxw𝒫AFwwy𝒫wFyFw
20 fveq2 z=wFz=Fw
21 id z=wz=w
22 20 21 sseq12d z=wFzzFww
23 22 intminss w𝒫AFwwz𝒫A|Fzzw
24 23 adantl AVFAAx𝒫Ay𝒫xFyFxw𝒫AFwwz𝒫A|Fzzw
25 1 24 eqsstrid AVFAAx𝒫Ay𝒫xFyFxw𝒫AFwwXw
26 vex wV
27 26 elpw2 X𝒫wXw
28 25 27 sylibr AVFAAx𝒫Ay𝒫xFyFxw𝒫AFwwX𝒫w
29 12 19 28 rspcdva AVFAAx𝒫Ay𝒫xFyFxw𝒫AFwwFXFw
30 simprr AVFAAx𝒫Ay𝒫xFyFxw𝒫AFwwFww
31 29 30 sstrd AVFAAx𝒫Ay𝒫xFyFxw𝒫AFwwFXw
32 31 expr AVFAAx𝒫Ay𝒫xFyFxw𝒫AFwwFXw
33 32 ralrimiva AVFAAx𝒫Ay𝒫xFyFxw𝒫AFwwFXw
34 ssintrab FXw𝒫A|Fwww𝒫AFwwFXw
35 33 34 sylibr AVFAAx𝒫Ay𝒫xFyFxFXw𝒫A|Fww
36 22 cbvrabv z𝒫A|Fzz=w𝒫A|Fww
37 36 inteqi z𝒫A|Fzz=w𝒫A|Fww
38 1 37 eqtri X=w𝒫A|Fww
39 35 38 sseqtrrdi AVFAAx𝒫Ay𝒫xFyFxFXX
40 11 sseq1d y=XFyFAFXFA
41 pweq x=A𝒫x=𝒫A
42 fveq2 x=AFx=FA
43 42 sseq2d x=AFyFxFyFA
44 41 43 raleqbidv x=Ay𝒫xFyFxy𝒫AFyFA
45 simp3 AVFAAx𝒫Ay𝒫xFyFxx𝒫Ay𝒫xFyFx
46 44 45 3 rspcdva AVFAAx𝒫Ay𝒫xFyFxy𝒫AFyFA
47 3 10 sselpwd AVFAAx𝒫Ay𝒫xFyFxX𝒫A
48 40 46 47 rspcdva AVFAAx𝒫Ay𝒫xFyFxFXFA
49 48 4 sstrd AVFAAx𝒫Ay𝒫xFyFxFXA
50 fvex FXV
51 50 elpw FX𝒫AFXA
52 49 51 sylibr AVFAAx𝒫Ay𝒫xFyFxFX𝒫A
53 fveq2 y=FXFy=FFX
54 53 sseq1d y=FXFyFXFFXFX
55 pweq x=X𝒫x=𝒫X
56 fveq2 x=XFx=FX
57 56 sseq2d x=XFyFxFyFX
58 55 57 raleqbidv x=Xy𝒫xFyFxy𝒫XFyFX
59 58 45 47 rspcdva AVFAAx𝒫Ay𝒫xFyFxy𝒫XFyFX
60 50 elpw FX𝒫XFXX
61 39 60 sylibr AVFAAx𝒫Ay𝒫xFyFxFX𝒫X
62 54 59 61 rspcdva AVFAAx𝒫Ay𝒫xFyFxFFXFX
63 fveq2 w=FXFw=FFX
64 id w=FXw=FX
65 63 64 sseq12d w=FXFwwFFXFX
66 65 intminss FX𝒫AFFXFXw𝒫A|FwwFX
67 52 62 66 syl2anc AVFAAx𝒫Ay𝒫xFyFxw𝒫A|FwwFX
68 38 67 eqsstrid AVFAAx𝒫Ay𝒫xFyFxXFX
69 39 68 eqssd AVFAAx𝒫Ay𝒫xFyFxFX=X
70 10 69 jca AVFAAx𝒫Ay𝒫xFyFxXAFX=X