Metamath Proof Explorer


Theorem knoppcn

Description: The continuous nowhere differentiable function W ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcn.t T=xx+12x
knoppcn.f F=yn0CnT2 Nny
knoppcn.w W=wi0Fwi
knoppcn.n φN
knoppcn.1 φC
knoppcn.2 φC<1
Assertion knoppcn φW:cn

Proof

Step Hyp Ref Expression
1 knoppcn.t T=xx+12x
2 knoppcn.f F=yn0CnT2 Nny
3 knoppcn.w W=wi0Fwi
4 knoppcn.n φN
5 knoppcn.1 φC
6 knoppcn.2 φC<1
7 nn0uz 0=0
8 0zd φ0
9 1 2 4 5 knoppcnlem11 φseq0f+m0zFzm:0cn
10 1 2 3 4 5 6 knoppcnlem9 φseq0f+m0zFzmuW
11 7 8 9 10 ulmcn φW:cn