| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latdisd.b |
|
| 2 |
|
latdisd.j |
|
| 3 |
|
latdisd.m |
|
| 4 |
1 3
|
latmcl |
|
| 5 |
4
|
3adant3r3 |
|
| 6 |
|
simpr1 |
|
| 7 |
|
simpr3 |
|
| 8 |
|
oveq1 |
|
| 9 |
|
oveq1 |
|
| 10 |
|
oveq1 |
|
| 11 |
9 10
|
oveq12d |
|
| 12 |
8 11
|
eqeq12d |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
oveq2d |
|
| 15 |
|
oveq2 |
|
| 16 |
15
|
oveq1d |
|
| 17 |
14 16
|
eqeq12d |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
oveq2d |
|
| 20 |
|
oveq2 |
|
| 21 |
20
|
oveq2d |
|
| 22 |
19 21
|
eqeq12d |
|
| 23 |
12 17 22
|
rspc3v |
|
| 24 |
5 6 7 23
|
syl3anc |
|
| 25 |
24
|
imp |
|
| 26 |
|
simpl |
|
| 27 |
1 2
|
latjcom |
|
| 28 |
26 5 6 27
|
syl3anc |
|
| 29 |
1 2 3
|
latabs1 |
|
| 30 |
29
|
3adant3r3 |
|
| 31 |
28 30
|
eqtrd |
|
| 32 |
1 2
|
latjcom |
|
| 33 |
26 5 7 32
|
syl3anc |
|
| 34 |
31 33
|
oveq12d |
|
| 35 |
34
|
adantr |
|
| 36 |
|
simpr2 |
|
| 37 |
|
oveq1 |
|
| 38 |
|
oveq1 |
|
| 39 |
|
oveq1 |
|
| 40 |
38 39
|
oveq12d |
|
| 41 |
37 40
|
eqeq12d |
|
| 42 |
13
|
oveq2d |
|
| 43 |
|
oveq2 |
|
| 44 |
43
|
oveq1d |
|
| 45 |
42 44
|
eqeq12d |
|
| 46 |
|
oveq2 |
|
| 47 |
46
|
oveq2d |
|
| 48 |
|
oveq2 |
|
| 49 |
48
|
oveq2d |
|
| 50 |
47 49
|
eqeq12d |
|
| 51 |
41 45 50
|
rspc3v |
|
| 52 |
7 6 36 51
|
syl3anc |
|
| 53 |
52
|
imp |
|
| 54 |
53
|
oveq2d |
|
| 55 |
1 2
|
latjcl |
|
| 56 |
26 7 6 55
|
syl3anc |
|
| 57 |
1 2
|
latjcl |
|
| 58 |
26 7 36 57
|
syl3anc |
|
| 59 |
1 3
|
latmass |
|
| 60 |
26 6 56 58 59
|
syl13anc |
|
| 61 |
1 2
|
latjcom |
|
| 62 |
26 7 6 61
|
syl3anc |
|
| 63 |
62
|
oveq2d |
|
| 64 |
1 2 3
|
latabs2 |
|
| 65 |
26 6 7 64
|
syl3anc |
|
| 66 |
63 65
|
eqtrd |
|
| 67 |
1 2
|
latjcom |
|
| 68 |
26 7 36 67
|
syl3anc |
|
| 69 |
66 68
|
oveq12d |
|
| 70 |
60 69
|
eqtr3d |
|
| 71 |
70
|
adantr |
|
| 72 |
54 71
|
eqtrd |
|
| 73 |
25 35 72
|
3eqtrrd |
|
| 74 |
73
|
an32s |
|
| 75 |
74
|
ralrimivvva |
|
| 76 |
75
|
ex |
|