| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latdisd.b |
|- B = ( Base ` K ) |
| 2 |
|
latdisd.j |
|- .\/ = ( join ` K ) |
| 3 |
|
latdisd.m |
|- ./\ = ( meet ` K ) |
| 4 |
1 3
|
latmcl |
|- ( ( K e. Lat /\ x e. B /\ y e. B ) -> ( x ./\ y ) e. B ) |
| 5 |
4
|
3adant3r3 |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ./\ y ) e. B ) |
| 6 |
|
simpr1 |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> x e. B ) |
| 7 |
|
simpr3 |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> z e. B ) |
| 8 |
|
oveq1 |
|- ( u = ( x ./\ y ) -> ( u .\/ ( v ./\ w ) ) = ( ( x ./\ y ) .\/ ( v ./\ w ) ) ) |
| 9 |
|
oveq1 |
|- ( u = ( x ./\ y ) -> ( u .\/ v ) = ( ( x ./\ y ) .\/ v ) ) |
| 10 |
|
oveq1 |
|- ( u = ( x ./\ y ) -> ( u .\/ w ) = ( ( x ./\ y ) .\/ w ) ) |
| 11 |
9 10
|
oveq12d |
|- ( u = ( x ./\ y ) -> ( ( u .\/ v ) ./\ ( u .\/ w ) ) = ( ( ( x ./\ y ) .\/ v ) ./\ ( ( x ./\ y ) .\/ w ) ) ) |
| 12 |
8 11
|
eqeq12d |
|- ( u = ( x ./\ y ) -> ( ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) <-> ( ( x ./\ y ) .\/ ( v ./\ w ) ) = ( ( ( x ./\ y ) .\/ v ) ./\ ( ( x ./\ y ) .\/ w ) ) ) ) |
| 13 |
|
oveq1 |
|- ( v = x -> ( v ./\ w ) = ( x ./\ w ) ) |
| 14 |
13
|
oveq2d |
|- ( v = x -> ( ( x ./\ y ) .\/ ( v ./\ w ) ) = ( ( x ./\ y ) .\/ ( x ./\ w ) ) ) |
| 15 |
|
oveq2 |
|- ( v = x -> ( ( x ./\ y ) .\/ v ) = ( ( x ./\ y ) .\/ x ) ) |
| 16 |
15
|
oveq1d |
|- ( v = x -> ( ( ( x ./\ y ) .\/ v ) ./\ ( ( x ./\ y ) .\/ w ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ w ) ) ) |
| 17 |
14 16
|
eqeq12d |
|- ( v = x -> ( ( ( x ./\ y ) .\/ ( v ./\ w ) ) = ( ( ( x ./\ y ) .\/ v ) ./\ ( ( x ./\ y ) .\/ w ) ) <-> ( ( x ./\ y ) .\/ ( x ./\ w ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ w ) ) ) ) |
| 18 |
|
oveq2 |
|- ( w = z -> ( x ./\ w ) = ( x ./\ z ) ) |
| 19 |
18
|
oveq2d |
|- ( w = z -> ( ( x ./\ y ) .\/ ( x ./\ w ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) |
| 20 |
|
oveq2 |
|- ( w = z -> ( ( x ./\ y ) .\/ w ) = ( ( x ./\ y ) .\/ z ) ) |
| 21 |
20
|
oveq2d |
|- ( w = z -> ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ w ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) ) |
| 22 |
19 21
|
eqeq12d |
|- ( w = z -> ( ( ( x ./\ y ) .\/ ( x ./\ w ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ w ) ) <-> ( ( x ./\ y ) .\/ ( x ./\ z ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) ) ) |
| 23 |
12 17 22
|
rspc3v |
|- ( ( ( x ./\ y ) e. B /\ x e. B /\ z e. B ) -> ( A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) -> ( ( x ./\ y ) .\/ ( x ./\ z ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) ) ) |
| 24 |
5 6 7 23
|
syl3anc |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) -> ( ( x ./\ y ) .\/ ( x ./\ z ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) ) ) |
| 25 |
24
|
imp |
|- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( ( x ./\ y ) .\/ ( x ./\ z ) ) = ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) ) |
| 26 |
|
simpl |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> K e. Lat ) |
| 27 |
1 2
|
latjcom |
|- ( ( K e. Lat /\ ( x ./\ y ) e. B /\ x e. B ) -> ( ( x ./\ y ) .\/ x ) = ( x .\/ ( x ./\ y ) ) ) |
| 28 |
26 5 6 27
|
syl3anc |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ./\ y ) .\/ x ) = ( x .\/ ( x ./\ y ) ) ) |
| 29 |
1 2 3
|
latabs1 |
|- ( ( K e. Lat /\ x e. B /\ y e. B ) -> ( x .\/ ( x ./\ y ) ) = x ) |
| 30 |
29
|
3adant3r3 |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .\/ ( x ./\ y ) ) = x ) |
| 31 |
28 30
|
eqtrd |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ./\ y ) .\/ x ) = x ) |
| 32 |
1 2
|
latjcom |
|- ( ( K e. Lat /\ ( x ./\ y ) e. B /\ z e. B ) -> ( ( x ./\ y ) .\/ z ) = ( z .\/ ( x ./\ y ) ) ) |
| 33 |
26 5 7 32
|
syl3anc |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ./\ y ) .\/ z ) = ( z .\/ ( x ./\ y ) ) ) |
| 34 |
31 33
|
oveq12d |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) = ( x ./\ ( z .\/ ( x ./\ y ) ) ) ) |
| 35 |
34
|
adantr |
|- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( ( ( x ./\ y ) .\/ x ) ./\ ( ( x ./\ y ) .\/ z ) ) = ( x ./\ ( z .\/ ( x ./\ y ) ) ) ) |
| 36 |
|
simpr2 |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> y e. B ) |
| 37 |
|
oveq1 |
|- ( u = z -> ( u .\/ ( v ./\ w ) ) = ( z .\/ ( v ./\ w ) ) ) |
| 38 |
|
oveq1 |
|- ( u = z -> ( u .\/ v ) = ( z .\/ v ) ) |
| 39 |
|
oveq1 |
|- ( u = z -> ( u .\/ w ) = ( z .\/ w ) ) |
| 40 |
38 39
|
oveq12d |
|- ( u = z -> ( ( u .\/ v ) ./\ ( u .\/ w ) ) = ( ( z .\/ v ) ./\ ( z .\/ w ) ) ) |
| 41 |
37 40
|
eqeq12d |
|- ( u = z -> ( ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) <-> ( z .\/ ( v ./\ w ) ) = ( ( z .\/ v ) ./\ ( z .\/ w ) ) ) ) |
| 42 |
13
|
oveq2d |
|- ( v = x -> ( z .\/ ( v ./\ w ) ) = ( z .\/ ( x ./\ w ) ) ) |
| 43 |
|
oveq2 |
|- ( v = x -> ( z .\/ v ) = ( z .\/ x ) ) |
| 44 |
43
|
oveq1d |
|- ( v = x -> ( ( z .\/ v ) ./\ ( z .\/ w ) ) = ( ( z .\/ x ) ./\ ( z .\/ w ) ) ) |
| 45 |
42 44
|
eqeq12d |
|- ( v = x -> ( ( z .\/ ( v ./\ w ) ) = ( ( z .\/ v ) ./\ ( z .\/ w ) ) <-> ( z .\/ ( x ./\ w ) ) = ( ( z .\/ x ) ./\ ( z .\/ w ) ) ) ) |
| 46 |
|
oveq2 |
|- ( w = y -> ( x ./\ w ) = ( x ./\ y ) ) |
| 47 |
46
|
oveq2d |
|- ( w = y -> ( z .\/ ( x ./\ w ) ) = ( z .\/ ( x ./\ y ) ) ) |
| 48 |
|
oveq2 |
|- ( w = y -> ( z .\/ w ) = ( z .\/ y ) ) |
| 49 |
48
|
oveq2d |
|- ( w = y -> ( ( z .\/ x ) ./\ ( z .\/ w ) ) = ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) |
| 50 |
47 49
|
eqeq12d |
|- ( w = y -> ( ( z .\/ ( x ./\ w ) ) = ( ( z .\/ x ) ./\ ( z .\/ w ) ) <-> ( z .\/ ( x ./\ y ) ) = ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) ) |
| 51 |
41 45 50
|
rspc3v |
|- ( ( z e. B /\ x e. B /\ y e. B ) -> ( A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) -> ( z .\/ ( x ./\ y ) ) = ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) ) |
| 52 |
7 6 36 51
|
syl3anc |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) -> ( z .\/ ( x ./\ y ) ) = ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) ) |
| 53 |
52
|
imp |
|- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( z .\/ ( x ./\ y ) ) = ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) |
| 54 |
53
|
oveq2d |
|- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( x ./\ ( z .\/ ( x ./\ y ) ) ) = ( x ./\ ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) ) |
| 55 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ z e. B /\ x e. B ) -> ( z .\/ x ) e. B ) |
| 56 |
26 7 6 55
|
syl3anc |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( z .\/ x ) e. B ) |
| 57 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ z e. B /\ y e. B ) -> ( z .\/ y ) e. B ) |
| 58 |
26 7 36 57
|
syl3anc |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( z .\/ y ) e. B ) |
| 59 |
1 3
|
latmass |
|- ( ( K e. Lat /\ ( x e. B /\ ( z .\/ x ) e. B /\ ( z .\/ y ) e. B ) ) -> ( ( x ./\ ( z .\/ x ) ) ./\ ( z .\/ y ) ) = ( x ./\ ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) ) |
| 60 |
26 6 56 58 59
|
syl13anc |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ./\ ( z .\/ x ) ) ./\ ( z .\/ y ) ) = ( x ./\ ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) ) |
| 61 |
1 2
|
latjcom |
|- ( ( K e. Lat /\ z e. B /\ x e. B ) -> ( z .\/ x ) = ( x .\/ z ) ) |
| 62 |
26 7 6 61
|
syl3anc |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( z .\/ x ) = ( x .\/ z ) ) |
| 63 |
62
|
oveq2d |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ./\ ( z .\/ x ) ) = ( x ./\ ( x .\/ z ) ) ) |
| 64 |
1 2 3
|
latabs2 |
|- ( ( K e. Lat /\ x e. B /\ z e. B ) -> ( x ./\ ( x .\/ z ) ) = x ) |
| 65 |
26 6 7 64
|
syl3anc |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ./\ ( x .\/ z ) ) = x ) |
| 66 |
63 65
|
eqtrd |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ./\ ( z .\/ x ) ) = x ) |
| 67 |
1 2
|
latjcom |
|- ( ( K e. Lat /\ z e. B /\ y e. B ) -> ( z .\/ y ) = ( y .\/ z ) ) |
| 68 |
26 7 36 67
|
syl3anc |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( z .\/ y ) = ( y .\/ z ) ) |
| 69 |
66 68
|
oveq12d |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ./\ ( z .\/ x ) ) ./\ ( z .\/ y ) ) = ( x ./\ ( y .\/ z ) ) ) |
| 70 |
60 69
|
eqtr3d |
|- ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ./\ ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) = ( x ./\ ( y .\/ z ) ) ) |
| 71 |
70
|
adantr |
|- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( x ./\ ( ( z .\/ x ) ./\ ( z .\/ y ) ) ) = ( x ./\ ( y .\/ z ) ) ) |
| 72 |
54 71
|
eqtrd |
|- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( x ./\ ( z .\/ ( x ./\ y ) ) ) = ( x ./\ ( y .\/ z ) ) ) |
| 73 |
25 35 72
|
3eqtrrd |
|- ( ( ( K e. Lat /\ ( x e. B /\ y e. B /\ z e. B ) ) /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) |
| 74 |
73
|
an32s |
|- ( ( ( K e. Lat /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) |
| 75 |
74
|
ralrimivvva |
|- ( ( K e. Lat /\ A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) ) -> A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) |
| 76 |
75
|
ex |
|- ( K e. Lat -> ( A. u e. B A. v e. B A. w e. B ( u .\/ ( v ./\ w ) ) = ( ( u .\/ v ) ./\ ( u .\/ w ) ) -> A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) ) |