Metamath Proof Explorer


Theorem lcfl4N

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcfl4.h H = LHyp K
lcfl4.o ˙ = ocH K W
lcfl4.u U = DVecH K W
lcfl4.v V = Base U
lcfl4.y Y = LSHyp U
lcfl4.f F = LFnl U
lcfl4.l L = LKer U
lcfl4.c C = f F | ˙ ˙ L f = L f
lcfl4.k φ K HL W H
lcfl4.g φ G F
Assertion lcfl4N φ G C ˙ ˙ L G Y L G = V

Proof

Step Hyp Ref Expression
1 lcfl4.h H = LHyp K
2 lcfl4.o ˙ = ocH K W
3 lcfl4.u U = DVecH K W
4 lcfl4.v V = Base U
5 lcfl4.y Y = LSHyp U
6 lcfl4.f F = LFnl U
7 lcfl4.l L = LKer U
8 lcfl4.c C = f F | ˙ ˙ L f = L f
9 lcfl4.k φ K HL W H
10 lcfl4.g φ G F
11 eqid LSAtoms U = LSAtoms U
12 1 2 3 4 11 6 7 8 9 10 lcfl3 φ G C ˙ L G LSAtoms U L G = V
13 eqid LSubSp U = LSubSp U
14 1 3 9 dvhlmod φ U LMod
15 4 6 7 14 10 lkrssv φ L G V
16 1 3 4 13 2 dochlss K HL W H L G V ˙ L G LSubSp U
17 9 15 16 syl2anc φ ˙ L G LSubSp U
18 1 2 3 13 11 5 9 17 dochsatshpb φ ˙ L G LSAtoms U ˙ ˙ L G Y
19 18 orbi1d φ ˙ L G LSAtoms U L G = V ˙ ˙ L G Y L G = V
20 12 19 bitrd φ G C ˙ ˙ L G Y L G = V