Metamath Proof Explorer


Theorem lcfrlem26

Description: Lemma for lcfr . Special case of lcfrlem36 when ( ( JY )I ) is zero. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H = LHyp K
lcfrlem17.o ˙ = ocH K W
lcfrlem17.u U = DVecH K W
lcfrlem17.v V = Base U
lcfrlem17.p + ˙ = + U
lcfrlem17.z 0 ˙ = 0 U
lcfrlem17.n N = LSpan U
lcfrlem17.a A = LSAtoms U
lcfrlem17.k φ K HL W H
lcfrlem17.x φ X V 0 ˙
lcfrlem17.y φ Y V 0 ˙
lcfrlem17.ne φ N X N Y
lcfrlem22.b B = N X Y ˙ X + ˙ Y
lcfrlem24.t · ˙ = U
lcfrlem24.s S = Scalar U
lcfrlem24.q Q = 0 S
lcfrlem24.r R = Base S
lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcfrlem24.ib φ I B
lcfrlem24.l L = LKer U
lcfrlem25.d D = LDual U
lcfrlem25.jz φ J Y I = Q
lcfrlem25.in φ I 0 ˙
Assertion lcfrlem26 φ X + ˙ Y ˙ L J Y

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H = LHyp K
2 lcfrlem17.o ˙ = ocH K W
3 lcfrlem17.u U = DVecH K W
4 lcfrlem17.v V = Base U
5 lcfrlem17.p + ˙ = + U
6 lcfrlem17.z 0 ˙ = 0 U
7 lcfrlem17.n N = LSpan U
8 lcfrlem17.a A = LSAtoms U
9 lcfrlem17.k φ K HL W H
10 lcfrlem17.x φ X V 0 ˙
11 lcfrlem17.y φ Y V 0 ˙
12 lcfrlem17.ne φ N X N Y
13 lcfrlem22.b B = N X Y ˙ X + ˙ Y
14 lcfrlem24.t · ˙ = U
15 lcfrlem24.s S = Scalar U
16 lcfrlem24.q Q = 0 S
17 lcfrlem24.r R = Base S
18 lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
19 lcfrlem24.ib φ I B
20 lcfrlem24.l L = LKer U
21 lcfrlem25.d D = LDual U
22 lcfrlem25.jz φ J Y I = Q
23 lcfrlem25.in φ I 0 ˙
24 1 2 3 4 5 6 7 8 9 10 11 12 lcfrlem17 φ X + ˙ Y V 0 ˙
25 24 eldifad φ X + ˙ Y V
26 1 3 2 4 7 9 25 dochocsn φ ˙ ˙ X + ˙ Y = N X + ˙ Y
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 lcfrlem25 φ ˙ X + ˙ Y = L J Y
28 27 fveq2d φ ˙ ˙ X + ˙ Y = ˙ L J Y
29 26 28 eqtr3d φ N X + ˙ Y = ˙ L J Y
30 eqimss N X + ˙ Y = ˙ L J Y N X + ˙ Y ˙ L J Y
31 29 30 syl φ N X + ˙ Y ˙ L J Y
32 eqid LSubSp U = LSubSp U
33 1 3 9 dvhlmod φ U LMod
34 eqid LFnl U = LFnl U
35 eqid 0 D = 0 D
36 eqid f LFnl U | ˙ ˙ L f = L f = f LFnl U | ˙ ˙ L f = L f
37 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 lcfrlem10 φ J Y LFnl U
38 4 34 20 33 37 lkrssv φ L J Y V
39 1 3 4 32 2 dochlss K HL W H L J Y V ˙ L J Y LSubSp U
40 9 38 39 syl2anc φ ˙ L J Y LSubSp U
41 4 32 7 33 40 25 lspsnel5 φ X + ˙ Y ˙ L J Y N X + ˙ Y ˙ L J Y
42 31 41 mpbird φ X + ˙ Y ˙ L J Y