Description: Lemma for lcfr . Special case of lcfrlem36 when ( ( JY )I ) is zero. (Contributed by NM, 11-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem17.h | |
|
lcfrlem17.o | |
||
lcfrlem17.u | |
||
lcfrlem17.v | |
||
lcfrlem17.p | |
||
lcfrlem17.z | |
||
lcfrlem17.n | |
||
lcfrlem17.a | |
||
lcfrlem17.k | |
||
lcfrlem17.x | |
||
lcfrlem17.y | |
||
lcfrlem17.ne | |
||
lcfrlem22.b | |
||
lcfrlem24.t | |
||
lcfrlem24.s | |
||
lcfrlem24.q | |
||
lcfrlem24.r | |
||
lcfrlem24.j | |
||
lcfrlem24.ib | |
||
lcfrlem24.l | |
||
lcfrlem25.d | |
||
lcfrlem25.jz | |
||
lcfrlem25.in | |
||
Assertion | lcfrlem26 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | |
|
2 | lcfrlem17.o | |
|
3 | lcfrlem17.u | |
|
4 | lcfrlem17.v | |
|
5 | lcfrlem17.p | |
|
6 | lcfrlem17.z | |
|
7 | lcfrlem17.n | |
|
8 | lcfrlem17.a | |
|
9 | lcfrlem17.k | |
|
10 | lcfrlem17.x | |
|
11 | lcfrlem17.y | |
|
12 | lcfrlem17.ne | |
|
13 | lcfrlem22.b | |
|
14 | lcfrlem24.t | |
|
15 | lcfrlem24.s | |
|
16 | lcfrlem24.q | |
|
17 | lcfrlem24.r | |
|
18 | lcfrlem24.j | |
|
19 | lcfrlem24.ib | |
|
20 | lcfrlem24.l | |
|
21 | lcfrlem25.d | |
|
22 | lcfrlem25.jz | |
|
23 | lcfrlem25.in | |
|
24 | 1 2 3 4 5 6 7 8 9 10 11 12 | lcfrlem17 | |
25 | 24 | eldifad | |
26 | 1 3 2 4 7 9 25 | dochocsn | |
27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | lcfrlem25 | |
28 | 27 | fveq2d | |
29 | 26 28 | eqtr3d | |
30 | eqimss | |
|
31 | 29 30 | syl | |
32 | eqid | |
|
33 | 1 3 9 | dvhlmod | |
34 | eqid | |
|
35 | eqid | |
|
36 | eqid | |
|
37 | 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 | lcfrlem10 | |
38 | 4 34 20 33 37 | lkrssv | |
39 | 1 3 4 32 2 | dochlss | |
40 | 9 38 39 | syl2anc | |
41 | 4 32 7 33 40 25 | lspsnel5 | |
42 | 31 41 | mpbird | |