Metamath Proof Explorer


Theorem lcfrlem26

Description: Lemma for lcfr . Special case of lcfrlem36 when ( ( JY )I ) is zero. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
lcfrlem22.b B=NXY˙X+˙Y
lcfrlem24.t ·˙=U
lcfrlem24.s S=ScalarU
lcfrlem24.q Q=0S
lcfrlem24.r R=BaseS
lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcfrlem24.ib φIB
lcfrlem24.l L=LKerU
lcfrlem25.d D=LDualU
lcfrlem25.jz φJYI=Q
lcfrlem25.in φI0˙
Assertion lcfrlem26 φX+˙Y˙LJY

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 lcfrlem22.b B=NXY˙X+˙Y
14 lcfrlem24.t ·˙=U
15 lcfrlem24.s S=ScalarU
16 lcfrlem24.q Q=0S
17 lcfrlem24.r R=BaseS
18 lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
19 lcfrlem24.ib φIB
20 lcfrlem24.l L=LKerU
21 lcfrlem25.d D=LDualU
22 lcfrlem25.jz φJYI=Q
23 lcfrlem25.in φI0˙
24 1 2 3 4 5 6 7 8 9 10 11 12 lcfrlem17 φX+˙YV0˙
25 24 eldifad φX+˙YV
26 1 3 2 4 7 9 25 dochocsn φ˙˙X+˙Y=NX+˙Y
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 lcfrlem25 φ˙X+˙Y=LJY
28 27 fveq2d φ˙˙X+˙Y=˙LJY
29 26 28 eqtr3d φNX+˙Y=˙LJY
30 eqimss NX+˙Y=˙LJYNX+˙Y˙LJY
31 29 30 syl φNX+˙Y˙LJY
32 eqid LSubSpU=LSubSpU
33 1 3 9 dvhlmod φULMod
34 eqid LFnlU=LFnlU
35 eqid 0D=0D
36 eqid fLFnlU|˙˙Lf=Lf=fLFnlU|˙˙Lf=Lf
37 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 lcfrlem10 φJYLFnlU
38 4 34 20 33 37 lkrssv φLJYV
39 1 3 4 32 2 dochlss KHLWHLJYV˙LJYLSubSpU
40 9 38 39 syl2anc φ˙LJYLSubSpU
41 4 32 7 33 40 25 lspsnel5 φX+˙Y˙LJYNX+˙Y˙LJY
42 31 41 mpbird φX+˙Y˙LJY