Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem38.h |
|
2 |
|
lcfrlem38.o |
|
3 |
|
lcfrlem38.u |
|
4 |
|
lcfrlem38.p |
|
5 |
|
lcfrlem38.f |
|
6 |
|
lcfrlem38.l |
|
7 |
|
lcfrlem38.d |
|
8 |
|
lcfrlem38.q |
|
9 |
|
lcfrlem38.c |
|
10 |
|
lcfrlem38.e |
|
11 |
|
lcfrlem38.k |
|
12 |
|
lcfrlem38.g |
|
13 |
|
lcfrlem38.gs |
|
14 |
|
lcfrlem38.xe |
|
15 |
|
lcfrlem38.ye |
|
16 |
1 3 11
|
dvhlmod |
|
17 |
|
eqid |
|
18 |
1 2 3 17 6 7 8 10 11 12 14
|
lcfrlem4 |
|
19 |
1 2 3 17 6 7 8 10 11 12 15
|
lcfrlem4 |
|
20 |
17 4
|
lmodcom |
|
21 |
16 18 19 20
|
syl3anc |
|
22 |
21
|
adantr |
|
23 |
11
|
adantr |
|
24 |
12
|
adantr |
|
25 |
15
|
adantr |
|
26 |
|
eqid |
|
27 |
|
simpr |
|
28 |
1 2 3 4 6 7 8 23 24 10 25 26 27
|
lcfrlem7 |
|
29 |
22 28
|
eqeltrd |
|
30 |
11
|
adantr |
|
31 |
12
|
adantr |
|
32 |
14
|
adantr |
|
33 |
|
simpr |
|
34 |
1 2 3 4 6 7 8 30 31 10 32 26 33
|
lcfrlem7 |
|
35 |
11
|
adantr |
|
36 |
12
|
adantr |
|
37 |
13
|
adantr |
|
38 |
14
|
adantr |
|
39 |
15
|
adantr |
|
40 |
|
simprl |
|
41 |
|
simprr |
|
42 |
1 2 3 4 5 6 7 8 9 10 35 36 37 38 39 26 40 41
|
lcfrlem41 |
|
43 |
29 34 42
|
pm2.61da2ne |
|