Metamath Proof Explorer


Theorem lclkrlem2r

Description: Lemma for lclkr . When B is zero, i.e. when X and Y are colinear, the intersection of the kernels of E and G equal the kernel of G , so the kernels of G and the sum are comparable. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v V=BaseU
lclkrlem2m.t ·˙=U
lclkrlem2m.s S=ScalarU
lclkrlem2m.q ×˙=S
lclkrlem2m.z 0˙=0S
lclkrlem2m.i I=invrS
lclkrlem2m.m -˙=-U
lclkrlem2m.f F=LFnlU
lclkrlem2m.d D=LDualU
lclkrlem2m.p +˙=+D
lclkrlem2m.x φXV
lclkrlem2m.y φYV
lclkrlem2m.e φEF
lclkrlem2m.g φGF
lclkrlem2n.n N=LSpanU
lclkrlem2n.l L=LKerU
lclkrlem2o.h H=LHypK
lclkrlem2o.o ˙=ocHKW
lclkrlem2o.u U=DVecHKW
lclkrlem2o.a ˙=LSSumU
lclkrlem2o.k φKHLWH
lclkrlem2q.le φLE=˙X
lclkrlem2q.lg φLG=˙Y
lclkrlem2q.b B=X-˙E+˙GX×˙IE+˙GY·˙Y
lclkrlem2q.n φE+˙GY0˙
lclkrlem2r.bn φB=0U
Assertion lclkrlem2r φLGLE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v V=BaseU
2 lclkrlem2m.t ·˙=U
3 lclkrlem2m.s S=ScalarU
4 lclkrlem2m.q ×˙=S
5 lclkrlem2m.z 0˙=0S
6 lclkrlem2m.i I=invrS
7 lclkrlem2m.m -˙=-U
8 lclkrlem2m.f F=LFnlU
9 lclkrlem2m.d D=LDualU
10 lclkrlem2m.p +˙=+D
11 lclkrlem2m.x φXV
12 lclkrlem2m.y φYV
13 lclkrlem2m.e φEF
14 lclkrlem2m.g φGF
15 lclkrlem2n.n N=LSpanU
16 lclkrlem2n.l L=LKerU
17 lclkrlem2o.h H=LHypK
18 lclkrlem2o.o ˙=ocHKW
19 lclkrlem2o.u U=DVecHKW
20 lclkrlem2o.a ˙=LSSumU
21 lclkrlem2o.k φKHLWH
22 lclkrlem2q.le φLE=˙X
23 lclkrlem2q.lg φLG=˙Y
24 lclkrlem2q.b B=X-˙E+˙GX×˙IE+˙GY·˙Y
25 lclkrlem2q.n φE+˙GY0˙
26 lclkrlem2r.bn φB=0U
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24 25 26 lclkrlem2p φ˙Y˙X
28 27 23 22 3sstr4d φLGLE
29 sseqin2 LGLELELG=LG
30 28 29 sylib φLELG=LG
31 17 19 21 dvhlmod φULMod
32 8 16 9 10 31 13 14 lkrin φLELGLE+˙G
33 30 32 eqsstrrd φLGLE+˙G