Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
lclkrlem2r
Metamath Proof Explorer
Description: Lemma for lclkr . When B is zero, i.e. when X and Y are
colinear, the intersection of the kernels of E and G equal the
kernel of G , so the kernels of G and the sum are comparable.
(Contributed by NM , 18-Jan-2015)
Ref
Expression
Hypotheses
lclkrlem2m.v
lclkrlem2m.t
lclkrlem2m.s
lclkrlem2m.q
lclkrlem2m.z
lclkrlem2m.i
lclkrlem2m.m
lclkrlem2m.f
lclkrlem2m.d
lclkrlem2m.p
lclkrlem2m.x
lclkrlem2m.y
lclkrlem2m.e
lclkrlem2m.g
lclkrlem2n.n
lclkrlem2n.l
lclkrlem2o.h
lclkrlem2o.o
lclkrlem2o.u
lclkrlem2o.a
lclkrlem2o.k
lclkrlem2q.le
lclkrlem2q.lg
lclkrlem2q.b
lclkrlem2q.n
lclkrlem2r.bn
Assertion
lclkrlem2r
Proof
Step
Hyp
Ref
Expression
1
lclkrlem2m.v
2
lclkrlem2m.t
3
lclkrlem2m.s
4
lclkrlem2m.q
5
lclkrlem2m.z
6
lclkrlem2m.i
7
lclkrlem2m.m
8
lclkrlem2m.f
9
lclkrlem2m.d
10
lclkrlem2m.p
11
lclkrlem2m.x
12
lclkrlem2m.y
13
lclkrlem2m.e
14
lclkrlem2m.g
15
lclkrlem2n.n
16
lclkrlem2n.l
17
lclkrlem2o.h
18
lclkrlem2o.o
19
lclkrlem2o.u
20
lclkrlem2o.a
21
lclkrlem2o.k
22
lclkrlem2q.le
23
lclkrlem2q.lg
24
lclkrlem2q.b
25
lclkrlem2q.n
26
lclkrlem2r.bn
27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24 25 26
lclkrlem2p
28
27 23 22
3sstr4d
29
sseqin2
30
28 29
sylib
31
17 19 21
dvhlmod
32
8 16 9 10 31 13 14
lkrin
33
30 32
eqsstrrd