Metamath Proof Explorer


Theorem lcmf0val

Description: The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmf0val Z0Zlcm_Z=0

Proof

Step Hyp Ref Expression
1 df-lcmf lcm_=z𝒫if0z0supn|mzmn<
2 eleq2 z=Z0z0Z
3 raleq z=ZmzmnmZmn
4 3 rabbidv z=Zn|mzmn=n|mZmn
5 4 infeq1d z=Zsupn|mzmn<=supn|mZmn<
6 2 5 ifbieq2d z=Zif0z0supn|mzmn<=if0Z0supn|mZmn<
7 iftrue 0Zif0Z0supn|mZmn<=0
8 7 adantl Z0Zif0Z0supn|mZmn<=0
9 6 8 sylan9eqr Z0Zz=Zif0z0supn|mzmn<=0
10 zex V
11 10 ssex ZZV
12 elpwg ZVZ𝒫Z
13 11 12 syl ZZ𝒫Z
14 13 ibir ZZ𝒫
15 14 adantr Z0ZZ𝒫
16 simpr Z0Z0Z
17 1 9 15 16 fvmptd2 Z0Zlcm_Z=0