Metamath Proof Explorer


Theorem lcmgcdeq

Description: Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmgcdeq MNMlcmN=MgcdNM=N

Proof

Step Hyp Ref Expression
1 dvdslcm MNMMlcmNNMlcmN
2 1 simpld MNMMlcmN
3 2 adantr MNMlcmN=MgcdNMMlcmN
4 gcddvds MNMgcdNMMgcdNN
5 4 simprd MNMgcdNN
6 breq1 MlcmN=MgcdNMlcmNNMgcdNN
7 5 6 syl5ibrcom MNMlcmN=MgcdNMlcmNN
8 7 imp MNMlcmN=MgcdNMlcmNN
9 lcmcl MNMlcmN0
10 9 nn0zd MNMlcmN
11 dvdstr MMlcmNNMMlcmNMlcmNNMN
12 10 11 syl3an2 MMNNMMlcmNMlcmNNMN
13 12 3com12 MNMNMMlcmNMlcmNNMN
14 13 3expb MNMNMMlcmNMlcmNNMN
15 14 anidms MNMMlcmNMlcmNNMN
16 15 adantr MNMlcmN=MgcdNMMlcmNMlcmNNMN
17 3 8 16 mp2and MNMlcmN=MgcdNMN
18 absdvdsb MNMNMN
19 zabscl MM
20 dvdsabsb MNMNMN
21 19 20 sylan MNMNMN
22 18 21 bitrd MNMNMN
23 22 adantr MNMlcmN=MgcdNMNMN
24 17 23 mpbid MNMlcmN=MgcdNMN
25 1 simprd MNNMlcmN
26 25 adantr MNMlcmN=MgcdNNMlcmN
27 4 simpld MNMgcdNM
28 breq1 MlcmN=MgcdNMlcmNMMgcdNM
29 27 28 syl5ibrcom MNMlcmN=MgcdNMlcmNM
30 29 imp MNMlcmN=MgcdNMlcmNM
31 dvdstr NMlcmNMNMlcmNMlcmNMNM
32 10 31 syl3an2 NMNMNMlcmNMlcmNMNM
33 32 3coml MNMNNMlcmNMlcmNMNM
34 33 3expb MNMNNMlcmNMlcmNMNM
35 34 anidms MNNMlcmNMlcmNMNM
36 35 adantr MNMlcmN=MgcdNNMlcmNMlcmNMNM
37 26 30 36 mp2and MNMlcmN=MgcdNNM
38 absdvdsb NMNMNM
39 zabscl NN
40 dvdsabsb NMNMNM
41 39 40 sylan NMNMNM
42 38 41 bitrd NMNMNM
43 42 ancoms MNNMNM
44 43 adantr MNMlcmN=MgcdNNMNM
45 37 44 mpbid MNMlcmN=MgcdNNM
46 nn0abscl MM0
47 nn0abscl NN0
48 46 47 anim12i MNM0N0
49 dvdseq M0N0MNNMM=N
50 48 49 sylan MNMNNMM=N
51 50 ex MNMNNMM=N
52 51 adantr MNMlcmN=MgcdNMNNMM=N
53 24 45 52 mp2and MNMlcmN=MgcdNM=N
54 lcmid MMlcmM=M
55 19 54 syl MMlcmM=M
56 gcdid MMgcdM=M
57 19 56 syl MMgcdM=M
58 55 57 eqtr4d MMlcmM=MgcdM
59 oveq2 M=NMlcmM=MlcmN
60 oveq2 M=NMgcdM=MgcdN
61 59 60 eqeq12d M=NMlcmM=MgcdMMlcmN=MgcdN
62 58 61 syl5ibcom MM=NMlcmN=MgcdN
63 62 imp MM=NMlcmN=MgcdN
64 63 adantlr MNM=NMlcmN=MgcdN
65 lcmabs MNMlcmN=MlcmN
66 gcdabs MNMgcdN=MgcdN
67 65 66 eqeq12d MNMlcmN=MgcdNMlcmN=MgcdN
68 67 adantr MNM=NMlcmN=MgcdNMlcmN=MgcdN
69 64 68 mpbid MNM=NMlcmN=MgcdN
70 53 69 impbida MNMlcmN=MgcdNM=N