Metamath Proof Explorer


Theorem lediv2aALT

Description: Division of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion lediv2aALT A0<AB0<BC0CABCBCA

Proof

Step Hyp Ref Expression
1 gt0ne0 B0<BB0
2 rereccl BB01B
3 1 2 syldan B0<B1B
4 gt0ne0 A0<AA0
5 rereccl AA01A
6 4 5 syldan A0<A1A
7 3 6 anim12i B0<BA0<A1B1A
8 7 ancoms A0<AB0<B1B1A
9 8 3adant3 A0<AB0<BC0C1B1A
10 simp3 A0<AB0<BC0CC0C
11 df-3an 1B1AC0C1B1AC0C
12 9 10 11 sylanbrc A0<AB0<BC0C1B1AC0C
13 lemul2a 1B1AC0C1B1AC1BC1A
14 13 ex 1B1AC0C1B1AC1BC1A
15 12 14 syl A0<AB0<BC0C1B1AC1BC1A
16 lerec A0<AB0<BAB1B1A
17 16 3adant3 A0<AB0<BC0CAB1B1A
18 recn CC
19 18 adantr C0CC
20 recn BB
21 20 adantr B0<BB
22 21 1 jca B0<BBB0
23 19 22 anim12i C0CB0<BCBB0
24 3anass CBB0CBB0
25 23 24 sylibr C0CB0<BCBB0
26 divrec CBB0CB=C1B
27 25 26 syl C0CB0<BCB=C1B
28 27 ancoms B0<BC0CCB=C1B
29 28 3adant1 A0<AB0<BC0CCB=C1B
30 recn AA
31 30 adantr A0<AA
32 31 4 jca A0<AAA0
33 19 32 anim12i C0CA0<ACAA0
34 3anass CAA0CAA0
35 33 34 sylibr C0CA0<ACAA0
36 divrec CAA0CA=C1A
37 35 36 syl C0CA0<ACA=C1A
38 37 ancoms A0<AC0CCA=C1A
39 38 3adant2 A0<AB0<BC0CCA=C1A
40 29 39 breq12d A0<AB0<BC0CCBCAC1BC1A
41 15 17 40 3imtr4d A0<AB0<BC0CABCBCA