Description: Equality from the less-than relationship. Proposition 5.9 of Schwabhauser p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | legval.p | |
|
legval.d | |
||
legval.i | |
||
legval.l | |
||
legval.g | |
||
legid.a | |
||
legid.b | |
||
legtrd.c | |
||
legtrd.d | |
||
legtri3.1 | |
||
legtri3.2 | |
||
Assertion | legtri3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | legval.p | |
|
2 | legval.d | |
|
3 | legval.i | |
|
4 | legval.l | |
|
5 | legval.g | |
|
6 | legid.a | |
|
7 | legid.b | |
|
8 | legtrd.c | |
|
9 | legtrd.d | |
|
10 | legtri3.1 | |
|
11 | legtri3.2 | |
|
12 | simpllr | |
|
13 | 12 | simprd | |
14 | 5 | ad4antr | |
15 | simp-4r | |
|
16 | 9 | ad4antr | |
17 | 8 | ad4antr | |
18 | 12 | simpld | |
19 | 1 2 3 14 17 15 16 18 | tgbtwncom | |
20 | simpr | |
|
21 | 20 | simpld | |
22 | simplr | |
|
23 | 7 | ad4antr | |
24 | 6 | ad4antr | |
25 | 1 2 3 14 17 16 22 21 | tgbtwncom | |
26 | 1 2 3 14 22 16 15 17 25 19 | tgbtwnexch2 | |
27 | 1 2 3 14 23 24 | tgbtwntriv1 | |
28 | 20 | simprd | |
29 | 1 2 3 14 17 22 24 23 28 | tgcgrcomlr | |
30 | 13 | eqcomd | |
31 | 1 2 3 14 17 15 24 23 30 | tgcgrcomlr | |
32 | 1 2 3 14 22 15 17 23 23 24 26 27 29 31 | tgcgrsub | |
33 | 1 2 3 14 22 15 23 32 | axtgcgrid | |
34 | 33 | oveq2d | |
35 | 21 34 | eleqtrd | |
36 | 1 2 3 14 17 16 15 35 | tgbtwncom | |
37 | 1 2 3 14 15 16 17 19 36 | tgbtwnswapid | |
38 | 37 | oveq2d | |
39 | 13 38 | eqtrd | |
40 | 1 2 3 4 5 8 9 6 7 | legov2 | |
41 | 11 40 | mpbid | |
42 | 41 | ad2antrr | |
43 | 39 42 | r19.29a | |
44 | 1 2 3 4 5 6 7 8 9 | legov | |
45 | 10 44 | mpbid | |
46 | 43 45 | r19.29a | |