Metamath Proof Explorer


Theorem legtri3

Description: Equality from the less-than relationship. Proposition 5.9 of Schwabhauser p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019)

Ref Expression
Hypotheses legval.p P=BaseG
legval.d -˙=distG
legval.i I=ItvG
legval.l ˙=𝒢G
legval.g φG𝒢Tarski
legid.a φAP
legid.b φBP
legtrd.c φCP
legtrd.d φDP
legtri3.1 φA-˙B˙C-˙D
legtri3.2 φC-˙D˙A-˙B
Assertion legtri3 φA-˙B=C-˙D

Proof

Step Hyp Ref Expression
1 legval.p P=BaseG
2 legval.d -˙=distG
3 legval.i I=ItvG
4 legval.l ˙=𝒢G
5 legval.g φG𝒢Tarski
6 legid.a φAP
7 legid.b φBP
8 legtrd.c φCP
9 legtrd.d φDP
10 legtri3.1 φA-˙B˙C-˙D
11 legtri3.2 φC-˙D˙A-˙B
12 simpllr φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BxCIDA-˙B=C-˙x
13 12 simprd φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BA-˙B=C-˙x
14 5 ad4antr φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BG𝒢Tarski
15 simp-4r φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BxP
16 9 ad4antr φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BDP
17 8 ad4antr φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BCP
18 12 simpld φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BxCID
19 1 2 3 14 17 15 16 18 tgbtwncom φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BxDIC
20 simpr φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BDCIyC-˙y=A-˙B
21 20 simpld φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BDCIy
22 simplr φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙ByP
23 7 ad4antr φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BBP
24 6 ad4antr φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BAP
25 1 2 3 14 17 16 22 21 tgbtwncom φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BDyIC
26 1 2 3 14 22 16 15 17 25 19 tgbtwnexch2 φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BxyIC
27 1 2 3 14 23 24 tgbtwntriv1 φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BBBIA
28 20 simprd φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BC-˙y=A-˙B
29 1 2 3 14 17 22 24 23 28 tgcgrcomlr φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙By-˙C=B-˙A
30 13 eqcomd φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BC-˙x=A-˙B
31 1 2 3 14 17 15 24 23 30 tgcgrcomlr φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙Bx-˙C=B-˙A
32 1 2 3 14 22 15 17 23 23 24 26 27 29 31 tgcgrsub φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙By-˙x=B-˙B
33 1 2 3 14 22 15 23 32 axtgcgrid φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙By=x
34 33 oveq2d φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BCIy=CIx
35 21 34 eleqtrd φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BDCIx
36 1 2 3 14 17 16 15 35 tgbtwncom φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BDxIC
37 1 2 3 14 15 16 17 19 36 tgbtwnswapid φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙Bx=D
38 37 oveq2d φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BC-˙x=C-˙D
39 13 38 eqtrd φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙BA-˙B=C-˙D
40 1 2 3 4 5 8 9 6 7 legov2 φC-˙D˙A-˙ByPDCIyC-˙y=A-˙B
41 11 40 mpbid φyPDCIyC-˙y=A-˙B
42 41 ad2antrr φxPxCIDA-˙B=C-˙xyPDCIyC-˙y=A-˙B
43 39 42 r19.29a φxPxCIDA-˙B=C-˙xA-˙B=C-˙D
44 1 2 3 4 5 6 7 8 9 legov φA-˙B˙C-˙DxPxCIDA-˙B=C-˙x
45 10 44 mpbid φxPxCIDA-˙B=C-˙x
46 43 45 r19.29a φA-˙B=C-˙D