Metamath Proof Explorer


Theorem leoprf

Description: The ordering relation for operators is reflexive. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leoprf THrmOpTopT

Proof

Step Hyp Ref Expression
1 0le0 00
2 hmopf THrmOpT:
3 hodid T:T-opT=0hop
4 2 3 syl THrmOpT-opT=0hop
5 4 adantr THrmOpxT-opT=0hop
6 5 fveq1d THrmOpxT-opTx=0hopx
7 ho0val x0hopx=0
8 7 adantl THrmOpx0hopx=0
9 6 8 eqtrd THrmOpxT-opTx=0
10 9 oveq1d THrmOpxT-opTxihx=0ihx
11 hi01 x0ihx=0
12 11 adantl THrmOpx0ihx=0
13 10 12 eqtr2d THrmOpx0=T-opTxihx
14 1 13 breqtrid THrmOpx0T-opTxihx
15 14 ralrimiva THrmOpx0T-opTxihx
16 leop THrmOpTHrmOpTopTx0T-opTxihx
17 16 anidms THrmOpTopTx0T-opTxihx
18 15 17 mpbird THrmOpTopT