Description: The ordering relation for operators is reflexive. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | leoprf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le0 | |
|
2 | hmopf | |
|
3 | hodid | |
|
4 | 2 3 | syl | |
5 | 4 | adantr | |
6 | 5 | fveq1d | |
7 | ho0val | |
|
8 | 7 | adantl | |
9 | 6 8 | eqtrd | |
10 | 9 | oveq1d | |
11 | hi01 | |
|
12 | 11 | adantl | |
13 | 10 12 | eqtr2d | |
14 | 1 13 | breqtrid | |
15 | 14 | ralrimiva | |
16 | leop | |
|
17 | 16 | anidms | |
18 | 15 17 | mpbird | |