Metamath Proof Explorer


Theorem lfladd0l

Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses lfladd0l.v V=BaseW
lfladd0l.r R=ScalarW
lfladd0l.p +˙=+R
lfladd0l.o 0˙=0R
lfladd0l.f F=LFnlW
lfladd0l.w φWLMod
lfladd0l.g φGF
Assertion lfladd0l φV×0˙+˙fG=G

Proof

Step Hyp Ref Expression
1 lfladd0l.v V=BaseW
2 lfladd0l.r R=ScalarW
3 lfladd0l.p +˙=+R
4 lfladd0l.o 0˙=0R
5 lfladd0l.f F=LFnlW
6 lfladd0l.w φWLMod
7 lfladd0l.g φGF
8 1 fvexi VV
9 8 a1i φVV
10 eqid BaseR=BaseR
11 2 10 1 5 lflf WLModGFG:VBaseR
12 6 7 11 syl2anc φG:VBaseR
13 4 fvexi 0˙V
14 13 a1i φ0˙V
15 2 lmodring WLModRRing
16 ringgrp RRingRGrp
17 6 15 16 3syl φRGrp
18 10 3 4 grplid RGrpkBaseR0˙+˙k=k
19 17 18 sylan φkBaseR0˙+˙k=k
20 9 12 14 19 caofid0l φV×0˙+˙fG=G