Description: Commutativity of functional addition. (Contributed by NM, 19-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lfladdcl.r | |
|
lfladdcl.p | |
||
lfladdcl.f | |
||
lfladdcl.w | |
||
lfladdcl.g | |
||
lfladdcl.h | |
||
Assertion | lfladdcom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfladdcl.r | |
|
2 | lfladdcl.p | |
|
3 | lfladdcl.f | |
|
4 | lfladdcl.w | |
|
5 | lfladdcl.g | |
|
6 | lfladdcl.h | |
|
7 | fvexd | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 1 8 9 3 | lflf | |
11 | 4 5 10 | syl2anc | |
12 | 1 8 9 3 | lflf | |
13 | 4 6 12 | syl2anc | |
14 | 1 | lmodring | |
15 | ringabl | |
|
16 | 4 14 15 | 3syl | |
17 | 16 | adantr | |
18 | simprl | |
|
19 | simprr | |
|
20 | 8 2 | ablcom | |
21 | 17 18 19 20 | syl3anc | |
22 | 7 11 13 21 | caofcom | |