Metamath Proof Explorer


Theorem lfladdcom

Description: Commutativity of functional addition. (Contributed by NM, 19-Oct-2014)

Ref Expression
Hypotheses lfladdcl.r R=ScalarW
lfladdcl.p +˙=+R
lfladdcl.f F=LFnlW
lfladdcl.w φWLMod
lfladdcl.g φGF
lfladdcl.h φHF
Assertion lfladdcom φG+˙fH=H+˙fG

Proof

Step Hyp Ref Expression
1 lfladdcl.r R=ScalarW
2 lfladdcl.p +˙=+R
3 lfladdcl.f F=LFnlW
4 lfladdcl.w φWLMod
5 lfladdcl.g φGF
6 lfladdcl.h φHF
7 fvexd φBaseWV
8 eqid BaseR=BaseR
9 eqid BaseW=BaseW
10 1 8 9 3 lflf WLModGFG:BaseWBaseR
11 4 5 10 syl2anc φG:BaseWBaseR
12 1 8 9 3 lflf WLModHFH:BaseWBaseR
13 4 6 12 syl2anc φH:BaseWBaseR
14 1 lmodring WLModRRing
15 ringabl RRingRAbel
16 4 14 15 3syl φRAbel
17 16 adantr φxBaseRyBaseRRAbel
18 simprl φxBaseRyBaseRxBaseR
19 simprr φxBaseRyBaseRyBaseR
20 8 2 ablcom RAbelxBaseRyBaseRx+˙y=y+˙x
21 17 18 19 20 syl3anc φxBaseRyBaseRx+˙y=y+˙x
22 7 11 13 21 caofcom φG+˙fH=H+˙fG