Metamath Proof Explorer


Theorem lfuhgr

Description: A hypergraph is loop-free if and only if every edge connects at least two vertices. (Contributed by BTernaryTau, 15-Oct-2023)

Ref Expression
Hypotheses lfuhgr.1 V=VtxG
lfuhgr.2 I=iEdgG
Assertion lfuhgr GUHGraphI:domIx𝒫V|2xxEdgG2x

Proof

Step Hyp Ref Expression
1 lfuhgr.1 V=VtxG
2 lfuhgr.2 I=iEdgG
3 edgval EdgG=raniEdgG
4 2 rneqi ranI=raniEdgG
5 3 4 eqtr4i EdgG=ranI
6 5 sseq1i EdgGx𝒫V|2xranIx𝒫V|2x
7 2 uhgrfun GUHGraphFunI
8 fdmrn FunII:domIranI
9 fss I:domIranIranIx𝒫V|2xI:domIx𝒫V|2x
10 9 ex I:domIranIranIx𝒫V|2xI:domIx𝒫V|2x
11 8 10 sylbi FunIranIx𝒫V|2xI:domIx𝒫V|2x
12 7 11 syl GUHGraphranIx𝒫V|2xI:domIx𝒫V|2x
13 frn I:domIx𝒫V|2xranIx𝒫V|2x
14 12 13 impbid1 GUHGraphranIx𝒫V|2xI:domIx𝒫V|2x
15 6 14 bitrid GUHGraphEdgGx𝒫V|2xI:domIx𝒫V|2x
16 uhgredgss GUHGraphEdgG𝒫VtxG
17 16 difss2d GUHGraphEdgG𝒫VtxG
18 1 pweqi 𝒫V=𝒫VtxG
19 17 18 sseqtrrdi GUHGraphEdgG𝒫V
20 ssrab EdgGx𝒫V|2xEdgG𝒫VxEdgG2x
21 20 baib EdgG𝒫VEdgGx𝒫V|2xxEdgG2x
22 19 21 syl GUHGraphEdgGx𝒫V|2xxEdgG2x
23 15 22 bitr3d GUHGraphI:domIx𝒫V|2xxEdgG2x